109 research outputs found

    The Vortex: The Concentrated Racial Impact of Drug Imprisonment and the Characteristics of Punitive Counties

    Get PDF
    This report describes the relationship between drug admission rates and the structural and demographic characteristics of counties -- budgets and spending for law enforcement, unemployment rates, poverty rates, and the percentage of the population that is African American

    Coronavirus and farm workers

    Get PDF

    The influence of cultural-linguistic background on family and SLP perceptions of pragmatic communication skills following right-hemisphere stroke

    Get PDF
    Pragmatic communication abilities are frequently impaired in persons who have had a right-hemisphere stroke. Speech-language pathologists (SLPs) often supplement their own pragmatic communication assessment ratings with ratings from the patients’ family members. These ratings, by both SLPs and family members, are likely to be biased by their respective cultural-linguistic backgrounds. The pragmatic communication ratings of Caucasian SLPs were compared with Caucasian and African-American families’ ratings for patients following right-hemisphere stroke. SLPs’ ratings agreed more closely with Caucasian families, but not to a degree that reached statistical significance. The nature of this agreement regarding specific pragmatic communication behaviors, as well as clinical implications, are discussed

    Kelt-17B: A Hot-Jupiter Transiting an A-Star in a misaligned orbit detected with Doppler Tomography

    Get PDF
    We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a 1.310.29+0.28MJ{1.31}_{-0.29}^{+0.28}\,{M}_{{\rm{J}}}, 1.5250.060+0.065RJ{1.525}_{-0.060}^{+0.065}\,{R}_{{\rm{J}}} hot-Jupiter in a 3.08-day period orbit misaligned at −115fdg9 ± 4fdg1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin–orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (α<0.30\alpha \lt 0.30 at 2σ2\sigma significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of 1.6350.061+0.066M{1.635}_{-0.061}^{+0.066}\,{M}_{\odot }, an effective temperature of 7454 ± 49 K, and a projected rotational velocity of vsinI=44.21.3+1.5kms1;v\sin {I}_{* }={44.2}_{-1.3}^{+1.5}\,\mathrm{km}\,{{\rm{s}}}^{-1}; it is among the most massive, hottest, and most rapidly rotating of known planet hosts

    KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra

    Get PDF
    We announce the discovery of a highly inflated transiting hot Jupiter discovered by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with Teff=575455+54T_{\rm eff} = 5754_{-55}^{+54} K, logg=4.0780.054+0.049\log{g} = 4.078_{-0.054}^{+0.049}, [Fe/H]=0.272±0.038[Fe/H] = 0.272\pm0.038, an inferred mass M=1.2110.066+0.078M_{*}=1.211_{-0.066}^{+0.078} M_{\odot}, and radius R=1.670.12+0.14R_{*}=1.67_{-0.12}^{+0.14} R_{\odot}. The planetary companion has mass MP=0.8670.061+0.065M_P = 0.867_{-0.061}^{+0.065} MJM_{J}, radius RP=1.860.16+0.18R_P = 1.86_{-0.16}^{+0.18} RJR_{J}, surface gravity loggP=2.7930.075+0.072\log{g_{P}} = 2.793_{-0.075}^{+0.072}, and density ρP=0.1670.038+0.047\rho_P = 0.167_{-0.038}^{+0.047} g cm3^{-3}. The planet is on a roughly circular orbit with semimajor axis a=0.045710.00084+0.00096a = 0.04571_{-0.00084}^{+0.00096} AU and eccentricity e=0.0350.025+0.050e = 0.035_{-0.025}^{+0.050}. The best-fit linear ephemeris is T0=2456883.4803±0.0007T_0 = 2456883.4803 \pm 0.0007 BJDTDB_{\rm TDB} and P=3.24406±0.00016P = 3.24406 \pm 0.00016 days. This planet is one of the most inflated of all known transiting exoplanets, making it one of the few members of a class of extremely low density, highly-irradiated gas giants. The low stellar logg\log{g} and large implied radius are supported by stellar density constraints from follow-up light curves, plus an evolutionary and space motion analysis. We also develop a new technique to extract high precision radial velocities from noisy spectra that reduces the observing time needed to confirm transiting planet candidates. This planet boasts deep transits of a bright star, a large inferred atmospheric scale height, and a high equilibrium temperature of Teq=167555+61T_{eq}=1675^{+61}_{-55} K, assuming zero albedo and perfect heat redistribution, making it one of the best targets for future atmospheric characterization studies.Comment: Submitted to ApJ, feedback is welcom
    corecore