5 research outputs found
Nonlinear optical properties of organic materials: A theoretical study
Replacement of electronic switching circuits in computing and telecommunication systems with purely optical devices offers the potential for extremely high throughput and compact information processing systems. The potential application of organic materials containing molecules with large nonresonant nonlinear effects in this area have triggered intensive research during the last decade. Interest on this area was due to two facts: (1) that many organic materials show nonlinearities that are orders of magnitude larger than those of conventional inorganic materials such as lithium niobate and potassium dihydrogen phosphate; and (2) that organic materials show much flexibility in terms of molecular designs. Some of the desirable characteristics that these materials should have are that they be transparent to the frequency of the incident laser and its second or third harmonic, that they have a high damage threshold, and, in the case of second-order effects, that their crystal structure or molecular orientation be accentric. Since polymeric assemblages can enhance the nonlinear response of organic molecules severalfold, efforts have been directed toward the synthesis of thin films with interpenetrating lattices of electroactive molecules. The goal of this theoretical investigation is to predict the magnitude of the molecular polarizabilities of organic molecules that could be incorporated into films. These calculations are intended to become a powerful tool to assist material scientists in screening for the best candidates for optical applications. The procedure that was developed for the present calculations is based on the static-field approach, and is a modification to the method developed by Dewar and Stewart, 1984 for calculating molecular linear polarizabilities
Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor
In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties
Free radical pathways for the prebiotic formation of xanthine and isoguanine from formamide
Free radical pathways for the synthesis of xanthine and isoguanine from formamide were studied using density functional theory (B3LYP/6-311G(d,p)). The proposed mechanisms are complex and appropriate for the non-aqueous scenario of prebiotic reactions. Formation of the carbonyl bond in the nucleobases proceeds through enol-keto tautomerization since the direct formation of the CO bond is a highly endothermic step. The mechanisms show 2-amino-imidazole as a precursor for nucleobases and polyazaporphyrin. The proposed mechanisms contribute to a further understanding of the origin of biomolecules. © 2014 Elsevier B.V. All rights reserved.status: publishe