19 research outputs found

    Fibrosis in chronic kidney disease: Pathogenesis and consequences

    Full text link
    Fibrosis is a process characterized by an excessive accumulation of the extracellular matrix as a response to different types of tissue injuries, which leads to organ dysfunction. The process can be initiated by multiple and different stimuli and pathogenic factors which trigger the cascade of reparation converging in molecular signals responsible of initiating and driving fibrosis. Though fibrosis can play a defensive role, in several circumstances at a certain stage, it can progressively become an uncontrolled irreversible and self-maintained process, named pathological fibrosis. Several systems, molecules and responses involved in the pathogenesis of the pathological fibrosis of chronic kidney disease (CKD) will be discussed in this review, putting special attention on inflammation, renin-angiotensin system (RAS), parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, microRNAs (miRs), and the vitamin D hormonal system. All of them are key factors of the core and regulatory pathways which drive fibrosis, having a great negative kidney and cardiac impact in CKD

    Marine macroalgae in rabbit nutrition: in vitro digestibility, caecal fermentability, and microbial inhibitory activity of seven macroalgae species from Galicia (NW Spain)

    Get PDF
    The limitation on the prophylactic use of antibiotics in animal feed in Europe has critically challenged the rabbit meat industry, which urgently needs to find solutions. A feasible alternative could be using macroalgae in the diet to improve the gut health. This research studied seven species of marine macroalgae in four formats (dehydrated, enzymatically hydrolyzed, aqueous extract, and aqueous extract of hydrolyzed macroalgae) in order to select the most promising ones for their use in rabbit feed. Chemical composition, in vitro digestibility, in vitro caecal gas, total volatile fatty acid (VFA) production, and minimal inhibitory concentrations (MIC) against common pathogens were studied. All S. latissima products showed high caecal fermentability and VFA production, especially in both types of extracts. The H. elongata aqueous extract was remarkable due to its high in vitro butyrate production, which can be of great interest for improving gut health. The MIC results did not indicate any clear inhibition of the pathogens tested. The macroalgae tested appear to have a potentially prebiotic effect, rather than a direct antimicrobial activity. However, these results must be confirmed in vivo, in order to observe the real benefits of feeding macroalgae during the rabbit weaning period.Ministerio de Agricultura, Pesca y AlimentaciĂł

    MicroRNA-145 and microRNA-486 are potential serum biomarkers for vascular calcification

    Get PDF
    INTRODUCTION: MicroRNAs (miRs) regulate vascular calcification (VC), and their quantification may contribute to suspicion of the presence of VC. METHODS: The study was performed in four phases. Phase 1: miRs sequencing of rat calcified and non-calcified aortas. Phase 2: miRs with the highest rate of change, plus miR-145 [the most abundant miR in vascular smooth muscle cells (VSMCs)], were validated in aortas and serum from rats with and without VC. Phase 3: the selected miRs were analyzed in epigastric arteries from kidney donors and recipients, and serum samples from general population. Phase 4: VSMCs were exposed to different phosphorus concentrations, and miR-145 and miR-486 were overexpressed to investigate their role in VC. RESULTS: miR-145, miR-122-5p, miR-486 and miR-598-3p decreased in the rat calcified aortas, but only miR-145 and miR-486 were detected in serum. In human epigastric arteries, miR-145 and miR-486 were lower in kidney transplant recipients compared with donors. Both miRs inversely correlated with arterial calcium content and with VC (Kauppila index). In the general population, the severe VC was associated with the lowest serum levels of both miRs. The receiver operating characteristic curve showed that serum miR-145 was a good biomarker of VC. In VSMCs exposed to high phosphorus, calcium content, osteogenic markers (Runx2 and Osterix) increased, and the contractile marker (α-actin), miR-145 and miR-486 decreased. Overexpression of miR-145, and to a lesser extent miR-486, prevented the increase in calcium content induced by high phosphorus, the osteogenic differentiation and the loss of the contractile phenotype. CONCLUSION: miR-145 and miR-486 regulate the osteogenic differentiation of VSMCs, and their quantification in serum could serve as a marker of VC

    Mineral and Bone Metabolism Markers and Mortality in Diabetic Patients on Haemodialysis

    Get PDF
    © The Author(s) 2023. Published by Oxford University Press on behalf of the ERA.BACKGROUND: Diabetic patients on haemodialysis have a higher risk of mortality than non-diabetic patients. The aim of this COSMOS analysis was to assess whether bone and mineral laboratory values (calcium, phosphorus, and PTH) contribute to such risk. METHODS: COSMOS is a multicentre, open-cohort, 3-year prospective study, which includes 6797 patients from 227 randomly selected dialysis centres from 20 European countries. The association between mortality and calcium, phosphate or PTH was assessed using Cox proportional hazard regression models using both penalized splines smoothing and categorization according to KDIGO guidelines. The effect modification of the association between the relative risk of mortality and serum calcium, phosphate or PTH by diabetes was assessed. RESULTS: There was a statistically significant effect modification of the association between the relative risk of mortality and serum PTH by diabetes (p = 0.011). The slope of the curve of the association between increasing values of PTH and relative risk of mortality was steeper for diabetic compared with non-diabetic patients, mainly for high levels of PTH. In addition, high serum PTH (> 9 times the normal values) was significantly associated with a higher relative risk of mortality in diabetic patients but not in non-diabetic patients (1.53[95%CI:1.07-2.19] and 1.17[95%CI:0.91-1.52]). No significant effect modification of the association between the relative risk of mortality and serum calcium or phosphate by diabetes was found (p = 0.2 and p = 0.059, respectively). CONCLUSION: The results show a different association of PTH with the relative risk of mortality in diabetic and non-diabetic patients. These findings could have relevant implications for the diagnosis and treatment of CKD-MBD.publishersversionpublishe

    Role of Klotho and AGE/RAGE-Wnt/β-catenin signalling pathway on the development of cardiac and renal fibrosis in diabetes

    Get PDF
    Fibrosis plays an important role in the pathogenesis of long-term diabetic complications and contributes to the development of cardiac and renal dysfunction. The aim of this experimental study, performed in a long-term rat model, which resembles type 1 diabetes mellitus, was to investigate the role of soluble Klotho (sKlotho), advanced glycation end products (AGEs)/receptor for AGEs (RAGE), fibrotic Wnt/β-catenin pathway, and pro-fibrotic pathways in kidney and heart. Diabetes was induced by streptozotocin. Glycaemia was maintained by insulin administration for 24 weeks. Serum and urine sKlotho, AGEs, soluble RAGE (sRAGE) and biochemical markers were studied. The levels of Klotho, RAGEs, ADAM10, markers of fibrosis (collagen deposition, fibronectin, TGF-β1, and Wnt/β-catenin pathway), hypertrophy of the kidney and/or heart were analysed. At the end of study, diabetic rats showed higher levels of urinary sKlotho, AGEs and sRAGE and lower serum sKlotho compared with controls without differences in the renal Klotho expression. A significant positive correlation was found between urinary sKlotho and AGEs and urinary albumin/creatinine ratio (uACR). Fibrosis and RAGE levels were significantly higher in the heart without differences in the kidney of diabetic rats compared to controls. The results also suggest the increase in sKlotho and sRAGE excretion may be due to polyuria in the diabetic rats
    corecore