32 research outputs found

    Role of cell cycle regulators in lung carcinogenesis

    No full text
    Cellular division is an ordered, tightly regulated process involving multiple checkpoints that assess extracellular growth signals, cell size and DNA integrity. Progression throughout the cell cycle is based on the activation of different CDK-cyclin complexes that prevent cells from entering into a new phase until thay have successfully complete the previous one. In addition, a series of cell cycle checkpoints are designed to preserve genome integrity and chromosomal stability. Neoplastic lung cells develop the ability to bypass several of these checkpoints, and tumor cell proliferation is frequently associated with genetic or epigenetic alterations in key regulators of the cell cycle. The goal of this review is to summarize the knowledge about the dysregulation of major cell cycle regulators in lung cancer pathogenesis and to discuss the use of these proteins as targets for therapeutic intervention

    A VEGF-A/SOX2/SRSF2 network controls VEGFR1 pre-mRNA alternative splicing in lung carcinoma cells

    No full text
    Abstract The splice variant sVEGFR1-i13 is a truncated version of the cell membrane-spanning VEGFR1 receptor that is devoid of its transmembrane and tyrosine kinase domains. We recently showed the contribution of sVEGFR1-i13 to the progression and the response of squamous lung carcinoma to anti-angiogenic therapies. In this study, we identify VEGF165, a splice variant of VEGF-A, as a regulator of sVEGFR1-i13 expression in these tumors, and further show that VEGF165 cooperates with the transcription factor SOX2 and the splicing factor SRSF2 to control sVEGFR1-i13 expression. We also demonstrate that anti-angiogenic therapies up-regulate sVEGFR1-i13 protein level in squamous lung carcinoma cells by a mechanism involving the VEGF165/SOX2/SRSF2 network. Collectively, our results identify for the first time a signaling network that controls VEGFR1 pre-mRNA alternative splicing in cancer cells

    Splice Variants of the RTK Family: Their Role in Tumour Progression and Response to Targeted Therapy

    No full text
    Receptor tyrosine kinases (RTKs) belong to a family of transmembrane receptors that display tyrosine kinase activity and trigger the activation of downstream signalling pathways mainly involved in cell proliferation and survival. RTK amplification or somatic mutations leading to their constitutive activation and oncogenic properties have been reported in various tumour types. Numerous RTK-targeted therapies have been developed to counteract this hyperactivation. Alternative splicing of pre-mRNA has recently emerged as an important contributor to cancer development and tumour maintenance. Interestingly, RTKs are alternatively spliced. However, the biological functions of RTK splice variants, as well as the upstream signals that control their expression in tumours, remain to be understood. More importantly, it remains to be determined whether, and how, these splicing events may affect the response of tumour cells to RTK-targeted therapies, and inversely, whether these therapies may impact these splicing events. In this review, we will discuss the role of alternative splicing of RTKs in tumour progression and response to therapies, with a special focus on two major RTKs that control proliferation, survival, and angiogenesis, namely, epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-1 (VEGFR1)

    Lung cancer: A modified epigenome

    No full text
    Epigenetic is the study of heritable changes in gene expression that occur without changes in DNA sequence. This process is important for gene expression and genome stability and its disruption is now thought to play a key role in the onset and progression of numerous tumor types. The most studied epigenetic phenomena includes post-translational modifications in DNA and histone proteins as well as microRNAs expression. As epigenetic aberrations are potentially reversible, their correction has emerged as a potential strategy for the treatment of cancer. This review highlights the roles of chromatin epigenetic modifications and of microRNAs expression in lung tumorigenesis and discusses the emerging epigenetic therapies which are being developed for the treatment of lung cancer

    Circular RNAs and RNA Splice Variants as Biomarkers for Prognosis and Therapeutic Response in the Liquid Biopsies of Lung Cancer Patients

    Get PDF
    International audienceLung cancer, including non-small cell lung carcinoma (NSCLC), is the most frequently diagnosed cancer. It is also the leading cause of cancer-related mortality worldwide because of its late diagnosis and its resistance to therapies. Therefore, the identification of biomarkers for early diagnosis, prognosis, and monitoring of therapeutic response is urgently needed. Liquid biopsies, especially blood, are considered as promising tools to detect and quantify circulating cancer biomarkers. Cell-free circulating tumor DNA has been extensively studied. Recently, the possibility to detect and quantify RNAs in tumor biopsies, notably circulating cell-free RNAs, has gained great attention. RNA alternative splicing contributes to the proteome diversity through the biogenesis of several mRNA splice variants from the same pre-mRNA. Circular RNA (circRNA) is a new class of RNAs resulting from pre-mRNA back splicing. Owing to the development of high-throughput transcriptomic analyses, numerous RNA splice variants and, more recently, circRNAs have been identified and found to be differentially expressed in tumor patients compared to healthy controls. The contribution of some of these RNA splice variants and circRNAs to tumor progression, dissemination, or drug response has been clearly demonstrated in preclinical models. In this review, we discuss the potential of circRNAs and mRNA splice variants as candidate biomarkers for the prognosis and the therapeutic response of NSCLC in liquid biopsies

    p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation.

    No full text
    International audiencep14ARF is a tumour suppressor which plays a critical role in p53-dependent or -independent cell growth control. Several studies have recently provided evidence that p14ARF can also interfere either directly or indirectly with some components of the RB signalling pathway to mediate its antiproliferative activity. The aim of this study was to explore the existence of direct relationships between p14ARF and RB proteins. We show that p14ARF promotes the accumulation of a hypoacetylated RB protein, when it is upregulated in a model of stable-inducible clones or physiologically induced following cell exposure to cytotoxic agents. Looking for the mechanisms involved in this process, we demonstrate that the histone acetyl transferase Tip60 directly interacts with RB and stimulates its degradation by the proteasome through acetylation of its C-terminus. Furthermore, and consistent with p14ARF-induced RB accumulation, we provide evidence that p14ARF prevents Tip60-mediated RB acetylation, therefore precluding its proteasomal degradation. Overall, our results identify a novel mechanism by which p14ARF controls the RB pathway to trigger its antiproliferative function

    Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma.

    Get PDF
    Splicing abnormalities frequently occur in cancer. A key role as splice site choice regulator is played by the members of the SR (Ser/Arg-rich) family of proteins. We recently demonstrated that SRSF2 is involved in cisplatin-mediated apoptosis of human lung carcinoma cell lines. In this study, by using immunohistochemistry, we demonstrate that the SR proteins SRSF1 and SRSF2 are overexpressed in 63% and 65% of lung adenocarcinoma (ADC) as well as in 68% and 91% of squamous cell lung carcinoma (SCC), respectively, compared to normal lung epithelial cells. In addition, we show that SRSF2 overexpression correlates with high level of phosphorylated SRSF2 in both ADC (p<0.0001) and SCC (p = 0.02), indicating that SRSF2 mostly accumulates under a phosphorylated form in lung tumors. Consistently, we further show that the SR-phosphorylating kinases SRPK1 and SRPK2 are upregulated in 92% and 94% of ADC as well as in 72% and 68% of SCC, respectively. P-SRSF2 and SRPK2 scores are correlated in ADC (p = 0.01). Using lung adenocarcinoma cell lines, we demonstrate that SRSF1 overexpression leads to a more invasive phenotype, evidenced by activation of PI3K/AKT and p42/44MAPK signaling pathways, increased growth capacity in soft agar, acquisition of mesenchymal markers such as E cadherin loss, vimentin and fibronectin gain, and increased resistance to chemotherapies. Finally, we provide evidence that high levels of SRSF1 and P-SRSF2 proteins are associated with extensive stage (III-IV) in ADC. Taken together, these results indicate that a global deregulation of pre-mRNA splicing regulators occurs during lung tumorigenesis and does not predict same outcome in both Non Small Cell Lung Carcinoma histological sub-types, likely contributing to a more aggressive phenotype in adenocarcinoma
    corecore