9 research outputs found

    Cardiolipin stabilizes and increases catalytic efficiency of carnitine palmitoyltransferase II and its variants S113L, P50H, and Y479F

    Get PDF
    Muscle carnitine palmitoyltransferase II (CPT II) deficiency is associated with various mutations in CPT2 gene. In the present study, the impact of the two CPT II variants P50H and Y479F were characterized in terms of stability and activity in vitro in comparison to wildtype (WT) and the well investigated variant S113L. While the initial enzyme activity of all variants showed wild-type-like behavior, the activity half-lives of the variants at different temperatures were severely reduced. This finding was validated by the investigation of thermostability of the enzymes using nano differential scanning fluorimetry (nanoDSF). Further, it was studied whether the protein stabilizing diphosphatidylglycerol cardiolipin (CL) has an effect on the variants. CL indeed had a positive effect on the stability. This effect was strongest for WT and least pronounced for variant P50H. Additionally, CL improved the catalytic efficiency for CPT II WT and the investigated variants by twofold when carnitine was the varied substrate due to a decrease in KM. However, there was no influence detected for the variation of substrate palmitoyl-CoA. The functional consequences of the stabilization by CL in vivo remain open.Publikationsfonds ML

    Dynamic Imprinting of the Treg Cell-Specific Epigenetic Signature in Developing Thymic Regulatory T Cells.

    No full text
    Regulatory T (Treg) cells mainly develop within the thymus and arise from CD25+Foxp3- (CD25+ TregP) or CD25-Foxp3+ (Foxp3+ TregP) Treg cell precursors resulting in Treg cells harboring distinct transcriptomic profiles and complementary T cell receptor repertoires. The stable and long-term expression of Foxp3 in Treg cells and their stable suppressive phenotype are controlled by the demethylation of Treg cell-specific epigenetic signature genes including an evolutionarily conserved CpG-rich element within the Foxp3 locus, the Treg-specific demethylated region (TSDR). Here we analyzed the dynamics of the imprinting of the Treg cell-specific epigenetic signature genes in thymic Treg cells. We could demonstrate that CD25+Foxp3+ Treg cells show a progressive demethylation of most signature genes during maturation within the thymus. Interestingly, a partial demethylation of several Treg cell-specific epigenetic signature genes was already observed in Foxp3+ TregP but not in CD25+ TregP. Furthermore, Foxp3+ TregP were very transient in nature and arose at a more mature developmental stage when compared to CD25+ TregP. When the two Treg cell precursors were cultured in presence of IL-2, a factor known to be critical for thymic Treg cell development, we observed a major impact of IL-2 on the demethylation of the TSDR with a more pronounced effect on Foxp3+ TregP. Together, these results suggest that the establishment of the Treg cell-specific hypomethylation pattern is a continuous process throughout thymic Treg cell development and that the two known Treg cell precursors display distinct dynamics for the imprinting of the Treg cell-specific epigenetic signature genes

    c-Rel<sup>−/−</sup> Tregs show a stable phenotype.

    No full text
    <p>(<b>A</b>) CD4<sup>+</sup>CD25<sup>hi</sup> Tregs and CD4<sup>+</sup>CD25<sup>−</sup> Tconv were isolated from wild-type (WT) or c-Rel<sup>−/−</sup> mice. Genomic DNA was isolated and subjected to bisulfite sequencing in order to determine the methylation status of CpG dinucleotides within the TSDR. (<b>B</b>) CD4<sup>+</sup>CD8<sup>−</sup>CD62L<sup>hi</sup>CD25<sup>hi</sup> Tregs from spleen and lymph nodes of c-Rel<sup>−/−</sup> or WT mice were sorted and an aliquot was analyzed for Foxp3 expression by flow cytometry (top panel). Cells were cultured in the presence of IL-2 and stimulated by plate-bound α-CD3/CD28 for six days followed by flow cytometric analysis of Foxp3 expression. Cells depicted were pregated to viable CD4<sup>+</sup> T cells. Results represent one out of two independent experiments.</p

    Degradation of IκBα is not required for TSDR enhancer activity.

    No full text
    <p>Luciferase plasmids integrating either the NF-κB-RE or TSDR-FoxPro were co-transfected with either an empty vector or with a vector encoding the super-repressor, a non-degradable form of IκBα, into RLM-11 cells. Dual luciferase assays were performed as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088318#pone-0088318-g001" target="_blank">Figure 1</a> and unstimulated cells served as controls. Luciferase activities are shown as percent of empty vector controls and standard deviations of performed triplicates are shown. One representative experiment out of at least two independent experiments is depicted.</p

    The postulated NF-κB binding site of the TSDR is not transcriptionally responsive to activated NF-κB.

    No full text
    <p>(<b>A</b>) RLM-11 cells were stimulated with PMA/iono for indicated time periods and applied to subcellular fractionation. Nuclear and cytoplasmic extracts were analyzed by Western blotting using the indicated antibodies. p44/42 and lamin B served as loading and purity controls for cytoplasmic and nuclear fractions, respectively. (<b>B</b>) A luciferase reporter plasmid integrating the NF-κB-RE was transfected into RLM-11 cells and dual luciferase assays were performed in triplicates as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088318#pone-0088318-g001" target="_blank">Figure 1</a>. Mean luciferase activity is shown as fold increase to unstimulated control. Results are representative of four independent experiments. (<b>C</b>) A schematic view on the first part of the <i>Foxp3</i> gene locus is depicted. White boxes indicate untranslated exons, the first translated exon is indicated in black. Evolutionary conserved non-coding sequences (CNS) are indicated in grey. The distended region of the TSDR includes the previously described NF-κB binding site (black frame), which is flanked by the seventh CpG motif (underlined) of the TSDR. (<b>D</b>) A tandem of five repetitive sequences of the putative NF-κB binding site was inserted into the pCpGL luciferase reporter plasmid upstream of the <i>EF</i> promoter (tandem-EFPro). Dual luciferase assays were performed as described in (B) using pCpGL-TSDR-EFPro as a positive control. Data represent one out of two independent experiments.</p

    B cells and macrophages fail to induce transcriptional enhancer activity of the TSDR.

    No full text
    <p>Dual luciferase assays were performed after transfecting reporter plasmids carrying the indicated inserts or an empty pGL3 vector (EV) into RLM-11 cells (T cell line), A20 cells (B cell line) or RAW 264.7 cells (macrophage cell line). Three hrs (RLM-11, A20) or 20 hrs (RAW 264.7) after transfection, cells were stimulated for 16 hrs with PMA/iono (RLM-11, A20) or for 14 hrs with LPS/IFN-γ (RAW 264.7), followed by measurement of luciferase activities (mean±SD, n = 3). Data are representative of two to four independent experiments.</p

    Kinase activity of IKKα and IKKβ is largely dispensable for TSDR enhancer activity.

    No full text
    <p>(<b>A</b>) Luciferase plasmids encoding NF-κB-RE or TSDR-FoxPro were co-transfected with plasmids encoding kinase dead (KD) or wild-type (WT) forms of IκB kinase α and β (IKKα and IKKβ) into RLM-11 cells. Cells were cultured for one day allowing efficient protein expression before cells were stimulated overnight with PMA/iono and dual luciferase assays were performed. Luciferase activities are given as percent of luciferase activity of WT samples and standard deviations were calculated from three replicates. (<b>B</b>) Dual luciferase assays as described in (A) were performed co-transfecting the indicated luciferase constructs with a plasmid encoding the constitutively active form of IKKβ (IKK-CA) or empty vector as control (mean±SD, n = 3). One representative out of three independent experiments is shown.</p

    Profiling of epigenetic marker regions in murine ILCs under homeostatic and inflammatory conditions

    No full text
    Beckstette M, Lu C-W, Herppich S, et al. Profiling of epigenetic marker regions in murine ILCs under homeostatic and inflammatory conditions. Journal of Experimental Medicine. 2022;219(10): e20210663.Epigenetic modifications such as DNA methylation play an essential role in imprinting specific transcriptional patterns in cells. We performed genome-wide DNA methylation profiling of murine lymph node-derived ILCs, which led to the identification of differentially methylated regions (DMRs) and the definition of epigenetic marker regions in ILCs. Marker regions were located in genes with a described function for ILCs, such as Tbx21, Gata3, or Il23r, but also in genes that have not been related to ILC biology. Methylation levels of the marker regions and expression of the associated genes were strongly correlated, indicating their functional relevance. Comparison with T helper cell methylomes revealed clear lineage differences, despite partial similarities in the methylation of specific ILC marker regions. IL-33-mediated challenge affected methylation of ILC2 epigenetic marker regions in the liver, while remaining relatively stable in the lung. In our study, we identified a set of epigenetic markers that can serve as a tool to study phenotypic and functional properties of ILCs. © 2022 Beckstette et al

    The Treg-specific demethylated region stabilizes Foxp3 expression independently of NF-κB signaling.

    Get PDF
    Regulatory T cells (Tregs) obtain immunosuppressive capacity by the upregulation of forkhead box protein 3 (Foxp3), and persistent expression of this transcription factor is required to maintain their immune regulatory function and ensure immune homeostasis. Stable Foxp3 expression is achieved through epigenetic modification of the Treg-specific demethylated region (TSDR), an evolutionarily conserved non-coding element within the Foxp3 gene locus. Here, we present molecular data suggesting that TSDR enhancer activity is restricted to T cells and cannot be induced in other immune cells such as macrophages or B cells. Since NF-κB signaling has been reported to be instrumental to induce Foxp3 expression during Treg development, we analyzed how NF-κB factors are involved in the molecular regulation of the TSDR. Unexpectedly, we neither observed transcriptional activity of a previously postulated NF-κB binding site within the TSDR nor did the entire TSDR show any transcriptional responsiveness to NF-κB activation at all. Finally, the NF-κB subunit c-Rel revealed to be dispensable for epigenetic imprinting of sustained Foxp3 expression by TSDR demethylation. In conclusion, we show that NF-κB signaling is not substantially involved in TSDR-mediated stabilization of Foxp3 expression in Tregs
    corecore