19 research outputs found

    Modulating embryonic signaling pathways paves the way for regeneration in wound healing

    Get PDF
    Epithelial tissues, including the skin, are highly proliferative tissues with the capability to constant renewal and regeneration, a feature that is essential for survival as the skin forms a protective barrier against external insults and water loss. In adult mammalian skin, every injury will lead to a scar. The scar tissue that is produced to seal the wound efficiently is usually rigid and lacks elasticity and the skin’s original resilience to external impacts, but also secondary appendages such as hair follicles and sebaceous glands. While it was long thought that hair follicles develop solely during embryogenesis, it is becoming increasingly clear that hair follicles can also regenerate within a wound. The ability of the skin to induce hair neogenesis following injury however declines with age. As fetal and neonatal skin have the remarkable capacity to heal without scarring, the recapitulation of a neonatal state has been a primary target of recent regenerative research. In this review we highlight how modulating dermal signaling or the abundance of specific fibroblast subsets could be utilized to induce de novo hair follicles within the wound bed, and thus to shift wound repair with a scar to scarless regeneration

    A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells.

    Get PDF
    Individual human epidermal cells differ in their self-renewal ability. To uncover the molecular basis for this heterogeneity, we performed genome-wide pooled RNA interference screens and identified genes conferring a clonal growth advantage on normal and neoplastic (cutaneous squamous cell carcinoma, cSCC) human epidermal cells. The Hippo effector YAP was amongst the top positive growth regulators in both screens. By integrating the Hippo network interactome with our data sets, we identify WW-binding protein 2 (WBP2) as an important co-factor of YAP that enhances YAP/TEAD-mediated gene transcription. YAP and WPB2 are upregulated in actively proliferating cells of mouse and human epidermis and cSCC, and downregulated during terminal differentiation. WBP2 deletion in mouse skin results in reduced proliferation in neonatal and wounded adult epidermis. In reconstituted epidermis YAP/WBP2 activity is controlled by intercellular adhesion rather than canonical Hippo signalling. We propose that defective intercellular adhesion contributes to uncontrolled cSCC growth by preventing inhibition of YAP/WBP2

    Distinct fibroblast lineages determine dermal architecture in skin development and repair

    Get PDF
    This work was funded by the Wellcome Trust (F.M.W., A.C.F.-S.), the Medical Research Council (MRC) (F.M.W., A.C.F.-S.) and the European Union FP7 programme: TUMIC (F.M.W.), HEALING (F.M.W.) and EpigeneSys (A.C.F.-S.). B.M.L. is the recipient of a FEBS long-term fellowship. K.K. is the recipient of a MRC PhD Studentship. The authors acknowledge financial support from the Department of Health via theNational Institute forHealth Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London (KCL) and King’s College Hospital NHS Foundation Trust. Input from M. Mastrogiannaki, A. Reimer and B. Trappmann is gratefully acknowledged

    Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages

    Get PDF
    Sustained epidermal Wnt/β-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-β) signalling mediate the dermal changes. Pharmacological inhibition or genetic deletion of these pathways prevents β-catenin-induced dermal reprogramming and EF formation. Epidermal Shh stimulates proliferation of the papillary fibroblast lineage, whereas TGF-β2 controls proliferation, differentiation and ECM production by reticular fibroblasts. Hh inhibitors do not affect TGF-β target gene expression in reticular fibroblasts, and TGF-β inhibition does not prevent Hh target gene induction in papillary fibroblasts. However, when Hh signalling is inhibited the reticular dermis does not respond to epidermal β-catenin activation. We conclude that the dermal response to epidermal Wnt/β-catenin signalling depends on distinct fibroblast lineages responding to different paracrine signals

    β-catenin stabilization in skin fibroblasts causes fibrotic lesions by preventing adipocyte differentiation of the reticular dermis

    Get PDF
    The Wnt/β-catenin pathway plays a central role in epidermal homeostasis and regeneration, but how it affects fibroblast fate decisions is unknown. We investigated the effect of targeted β-catenin stabilization in dermal fibroblasts. Comparative gene expression profiling of stem cell antigen 1- (Sca1-) and Sca1+ neonatal fibroblasts from upper and lower dermis, respectively, confirmed that Sca1+ cells had a preadipocyte signature and showed differential expression of Wnt/β-catenin–associated genes. By targeting all fibroblasts or selectively targeting Dlk1+ lower dermal fibroblasts, we found that β-catenin stabilization between developmental stages E16.5 and P2 resulted in a reduction in the dermal adipocyte layer with a corresponding increase in dermal fibrosis and an altered hair cycle. The fibrotic phenotype correlated with a reduction in the potential of Sca1+ fibroblasts to undergo adipogenic differentiation ex vivo. Our findings indicate that Wnt/β-catenin signaling controls adipogenic cell fate within the lower dermis, which potentially contributes to the pathogenesis of fibrotic skin diseases

    Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors

    Get PDF
    It has long been recognized that the hair follicle growth cycle and oscillation in the thickness of the underlying adipocyte layer are synchronized. Although factors secreted by adipocytes are known to regulate the hair growth cycle, it is unclear whether the epidermis can regulate adipogenesis. We show that inhibition of epidermal Wnt/β-catenin signaling reduced adipocyte differentiation in developing and adult mouse dermis. Conversely, ectopic activation of epidermal Wnt signaling promoted adipocyte differentiation and hair growth. When the Wnt pathway was activated in the embryonic epidermis, there was a dramatic and premature increase in adipocytes in the absence of hair follicle formation, demonstrating that Wnt activation, rather than mature hair follicles, is required for adipocyte generation. Epidermal and dermal gene expression profiling identified keratinocyte-derived adipogenic factors that are induced by β-catenin activation. Wnt/β-catenin signaling-dependent secreted factors from keratinocytes promoted adipocyte differentiation in vitro, and we identified ligands for the bone morphogenetic protein and insulin pathways as proadipogenic factors. Our results indicate epidermal Wnt/β-catenin as a critical initiator of a signaling cascade that induces adipogenesis and highlight the role of epidermal Wnt signaling in synchronizing adipocyte differentiation with the hair growth cycle

    Journal of Investigative Dermatology / Lineage Identity and Location within the Dermis Determine the Function of Papillary and Reticular Fibroblasts in Human Skin

    No full text
    Human skin dermis is composed of the superficial papillary dermis and the reticular dermis in the lower layers, which can easily be distinguished histologically. In vitro analyses of fibroblasts from explant cultures from superficial and lower dermal layers suggest that human skin comprises at least two fibroblast lineages with distinct morphology, expression profiles, and functions. However, while for mouse skin cell surface markers have been identified, allowing the isolation of pure populations of one lineage or the other via FACS, this has not been achieved for human skin fibroblasts. We have now discovered two cell surface markers that discriminate between papillary and reticular fibroblasts. While FAPCD90 cells display increased proliferative potential, express PDPN and NTN1, and cannot be differentiated into adipocytes, FAPCD90 fibroblasts express high levels of ACTA2, MGP, PPAR, and CD36 and readily undergo adipogenic differentiation, a hallmark of reticular fibroblasts. Flow cytometric analysis of fibroblasts isolated from superficial and lower layers of human dermis showed that FAPCD90 cells are enriched in the papillary dermis. Altogether, functional analysis and expression profiling confirms that FAPCD90 cells represent papillary fibroblasts, whereas FAPCD90 fibroblasts derive from the reticular lineage. Although papillary and reticular fibroblasts are enriched in the upper or lower dermis, respectively, they are not spatially restricted, and the microenvironment seems to affect their function.(VLID)490407
    corecore