84 research outputs found
Peptide-Gold Nanoparticle Conjugates as Artificial Carbonic Anhydrase Mimics
We herein describe the design and synthesis of a catalytically active peptideâgold nanoparticle conjugate (Pep-Au-NP) that binds Zn(II) within its peptide monolayer and develops carbonic anhydrase activity. Specifically, a modified variant of the ÎČ-sheet forming IHIHIQI-peptide (IHQ), which forms an interstrand 3-His Zn(II)-binding site, was used as a ligand for spherical gold nanoparticles (Au-NPs). The resulting immobilized peptide maintains its ability to form ÎČ-sheets, as determined by circular dichroism (CD)-spectroscopy and, thus, maintains its ability to form Zn(II)-binding sites. The addition of Zn(II)-ions to the peptideâgold nanoparticle conjugates (Au@IHQ-NP) resulted in significant improvements in rates of ester hydrolysis of 4-nitrophenyl acetate (4-NPA) and the hydration of CO2 compared to the unconjugated peptide variants. Recycling of the catalyst revealed that Au@IHQ-NP remains intact with at least 94% of its initial activity after five rounds of CO2 hydration. The herein reported results reveal that Pep-Au-NPs are able to perform reactions catalyzed by natural metalloenzymes and open up new possibilities for the implementation of these conjugates
Catalytically active peptideâgold nanoparticle conjugates: Prospecting for artificial enzymes
The selfâassembly of peptides onto the surface of gold nanoparticles has emerged as a promising strategy towards the creation of artificial enzymes. The resulting high local peptide density surrounding the nanoparticle leads to cooperative and synergistic effects, which result in rate accelerations and distinct catalytic properties compared to the unconjugated peptide. This Minireview summarizes contributions to and progress made in the field of catalytically active peptideâgold nanoparticle conjugates. The origin of distinct properties, as well as potential applications, are also discussed
Impact of multivalent charge presentation on peptide-nanoparticle aggregation
Strategies to achieve controlled nanoparticle aggregation have gained much
interest, due to the versatility of such systems and their applications in
materials science and medicine. In this article we demonstrate that coiled-
coil peptide-induced aggregation based on electrostatic interactions is highly
sensitive to the length of the peptide as well as the number of presented
charges. The quaternary structure of the peptide was found to play an
important role in aggregation kinetics. Furthermore, we show that the presence
of peptide fibers leads to well-defined nanoparticle assembly on the surface
of these macrostructures
Coassembly Generates Peptide Hydrogel with Wound Dressing Material Properties
Multicomponent self-assembly of peptides is a powerful strategy to fabricate novel functional materials with synergetic properties that can be used for several nanobiotechnological applications. In the present study, we used a coassembly strategy to generate an injectable ultrashort bioactive peptide hydrogel formed by mixing a dipeptide hydrogelator with a macrophage attracting short chemotactic peptide ligand. Coassembly does not impede hydrogelation as shown by cryo-transmission electron microscopy (cryo-TEM), scanning electron microscopy, and rheology. Biocompatibility was shown by cytotoxicity assays and confocal microscopy. The hydrogels release the entrapped skin antibiotic ciprofloxacin, among others, in a slow and continuous manner. Such bioinspired advanced functional materials can find applications as wound dressing materials to treat chronic wound conditions like diabetic foot ulcer
Self-Assembling Peptides as Extracellular Matrix Mimics to Influence Stem Cell's Fate
Interest in biologically active materials that can be used as cell culture substrates for medicinal applications has increased dramatically over the last decade. The design and development of biomaterials mimicking the natural environment of different cell types, the so-called extracellular matrix (ECM), is the focus of research in this field. The ECM exists as an ensemble of several adhesion proteins with different functionalities that can be presented to the embedded cells. These functionalities regulate numerous cellular processes. Therefore, different approaches and strategies using peptide- and protein-based biopolymers have been investigated to support the proliferation, differentiation, and self-renewal of stem cells, in the context of regenerative medicine. This minireview summarizes recent developments in this area, with a focus on peptide-based biomaterials used as stem cell culture substrates
Biodegradation of Amphipathic Fluorinated Peptides Reveals a New Bacterial Defluorinating Activity and a New Source of Natural Organofluorine Compounds
Three peptides comprising mono-, di-, and tri-fluoroethylglycine (MfeGly, DfeGly, and TfeGly) residues alternating with lysine were digested by readily available proteases (elastase, bromelain, trypsin, and proteinase K). The degree of degradation depended on the enzyme employed and the extent of fluorination. Incubation of the peptides with a microbial consortium from garden soil resulted in degradation, yielding fluoride ions. Further biodegradation studies conducted with the individual fluorinated amino acids demonstrated that the degree of defluorination followed the sequence MfeGly > DfeGly > TfeGly. Enrichment of the soil bacteria employing MfeGly as a sole carbon and energy source resulted in the isolation of a bacterium, which was identified as Serratia liquefaciens. Cell-free extracts of this bacterium enzymatically defluorinated MfeGly, yielding fluoride ion and homoserine. In silico analysis of the genome revealed the presence of a gene that putatively codes for a dehalogenase. However, the low overall homology to known enzymes suggests a potentially new hydrolase that can degrade monofluorinated compounds. 19F NMR analysis of aqueous soil extracts revealed the unexpected presence of trifluoroacetate, fluoride ion, and fluoroacetate. Growth of the soil consortium in tryptone soya broth supplemented with fluoride ions resulted in fluoroacetate production; thus, bacteria in the soil produce and degrade organofluorine compounds
Orthogonal Translation Meets Electron Transfer: In Vivo Labeling of Cytochrome c for Probing Local Electric Fields
Cytochrome c (cyt c), a redox protein involved in diverse fundamental biological processes, is among the most traditional model proteins for analyzing biological electron transfer and protein dynamics both in solution and at membranes. Studying the role of electric fields in energy transduction mediated by cyt c relies upon appropriate reporter groups. Up to now these had to be introduced into cyt c by in vitro chemical modification. Here, we have overcome this restriction by incorporating the noncanonical amino acid p-cyanophenylalanine (pCNF) into cyt c in vivo. UV and CD spectroscopy indicate preservation of the overall protein fold, stability, and heme coordination, whereas a small shift of the redox potential was observed by cyclic voltammetry. The CâĄN stretching mode of the incorporated pCNF detected in the IR spectra reveals a surprising difference, which is related to the oxidation state of the heme iron, thus indicating high sensitivity to changes in the electrostatics of cyt c.Fil: Völler, Jan. Technishe Universitat Berlin; AlemaniaFil: Biava, Hernan Daniel. Technishe Universitat Berlin; Alemania. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Rosario. Instituto de QuĂmica Rosario; ArgentinaFil: Koksch, Beate. Freie UniversitĂ€ t Berlin; AlemaniaFil: Hildebrandt, Peter. Technishe Universitat Berlin; AlemaniaFil: Budisa, Nediljko. Technishe Universitat Berlin; Alemani
compatibility with native protein structures and effects on proteinâprotein interactions
Fluorinated analogues of the canonical α-L-amino acids have gained widespread
attention as building blocks that may endow peptides and proteins with
advantageous biophysical, chemical and biological properties. This critical
review covers the literature dealing with investigations of peptides and
proteins containing fluorinated analogues of the canonical amino acids
published over the course of the past decade including the late nineties. It
focuses on side-chain fluorinated amino acids, the carbon backbone of which is
identical to their natural analogues. Each class of amino acidsâaliphatic,
aromatic, charged and polar as well as prolineâis presented in a separate
section. General effects of fluorine on essential properties such as
hydrophobicity, acidity/basicity and conformation of the specific side chains
and the impact of these altered properties on stability, folding kinetics and
activity of peptides and proteins are discussed (245 references)
- âŠ