25 research outputs found

    Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Pollution Bulletin 109 (2016): 151–162, doi:10.1016/j.marpolbul.2016.06.008.Fluxes of dissolved trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) via groundwater discharge along the southern Baltic Sea have been assessed for the first time. Dissolved metal concentrations in groundwater samples were less variable than in seawater and were generally one or two orders of magnitude higher: Cd (2.1-2.8 nmolL−1), Co (8.70-8.76 nmolL−1), Cr (18.1-18.5 nmolL−1), Mn (2.4-2.8 ÎŒmolL−1), Pb (1.2-1.5 nmolL−1), Zn (33.1-34.0 nmolL−1). Concentrations of Cu (0.5-0.8 nmolL−1) and Ni (4.9-5.8 nmolL−1) were, respectively, 32 and 4 times lower, than in seawater. Groundwater-derived trace metal fluxes constitute 93% for Cd, 80% for Co, 91% for Cr, 6% for Cu, 66% for Mn, 4% for Ni, 70% for Pb and 93% for Zn of the total freshwater trace metal flux to the Bay of Puck. Groundwater-seawater mixing, redox conditions and Mn-cycling are the main processes responsible for trace metal distribution in groundwater discharge sites.The study reports the results obtained within the framework of the following projects: the statutory activities of the Institute of Oceanology Polish Academy of Sciences theme 2.2, research project No. 2012/05/N/ST10/02761 sponsored by the National Science Centre, and AMBER, the BONUS+ EU FP6 Project. We would like to thank Polish-U.S. Fulbright Commission for funding Szymczycha B. post-doctoral studies at USGS.2017-06-1

    Depth of the vadose zone controls aquifer biogeochemical conditions and extent of anthropogenic nitrogen removal

    Get PDF
    © The Author(s), 2017. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Water Research 123 (2017): 794-801, doi:10.1016/j.watres.2017.06.048.We investigated biogeochemical conditions and watershed features controlling the extent of nitrate removal through microbial dinitrogen (N2) production within the surficial glacial aquifer located on the north and south shores of Long Island, NY, USA. The extent of N2 production differs within portions of the aquifer, with greatest N2 production observed at the south shore of Long Island where the vadose zone is thinnest, while limited N2 production occurred under the thick vadose zones on the north shore. In areas with a shallow water table and thin vadose zone, low oxygen concentrations and sufficient DOC concentrations are conducive to N2 production. Results support the hypothesis that in aquifers without a significant supply of sediment-bound reducing potential, vadose zone thickness exerts an important control of the extent of N2 production. Since quantification of excess N2 relies on knowledge of equilibrium N2 concentration at recharge, calculated based on temperature at recharge, we further identify several features, such as land use and cover, seasonality of recharge, and climate change that should be considered to refine estimation of recharge temperature, its deviation from mean annual air temperature, and resulting deviation from expected equilibrium gas concentrations.Project supported by the Polish-U.S. Fulbright Commission, the USGS Coastal and Marine Geology Program, the National Fish and Wildlife Foundation, and the USGS/National Park Service Water-Quality Assessment and Monitoring program.2019-06-1

    The benthic-pelagic coupling affects the surface water carbonate system above groundwater-charged coastal sediments

    Get PDF
    Submarine groundwater discharge (SGD) can be a significant source of dissolved nutrients, inorganic and organic carbon, and trace metals in the ocean and therefore can be a driver for the benthic-pelagic coupling. However, the influence of hypoxic or anoxic SGD on the carbonate system of coastal seawater is still poorly understood. In the present study, the production of dissolved inorganic carbon (DIC) and alkalinity (AT) in coastal sediments has been investigated under the impact of oxygen-deficient SGD and was estimated based on the offset between the measured data and the conservative mixing of the end members. Production of AT and DIC was primarily caused by denitrification and sulphate reduction. The AT and DIC concentrations in SGD decreased by approximately 32% and 37% mainly due to mixing with seawater counterbalanced by reoxidation and CO2 release into the atmosphere. Total SGD-AT and SGD-DIC fluxes ranged from 0.1 to 0.2mol m-2 d-1 and from 0.2 to 0.3mol m-2 d-1, respectively. These fluxes are probably the reason why the seawater in the Bay of Puck is enriched in AT and DIC compared to the open waters of the Baltic Sea. Additionally, SGD had low pH and was undersaturated with respect to the forms of the aragonite and calcite minerals of CaCO3. The seawater of the Bay of Puck also turned out to be undersaturated in summer (Inner Bay) and fall (Outer Bay). We hypoth​e​size that SGD can potentially contribute to ocean acidification and affect the functioning of the calcifying invertebrates

    Biogeochemical functioning of the Baltic Sea

    Get PDF
    Location, specific topography, and hydrographic setting together with climate change and strong anthropogenic pressure are the main factors shaping the biogeochemical functioning and thus also the ecological status of the Baltic Sea. The recent decades have brought significant changes in the Baltic Sea. First, the rising nutrient loads from land in the second half of the 20th century led to eutrophication and spreading of hypoxic and anoxic areas, for which permanent stratification of the water column and limited ventilation of deep-water layers made favourable conditions. Since the 1980s the nutrient loads to the Baltic Sea have been continuously decreasing. This, however, has so far not resulted in significant improvements in oxygen availability in the deep regions, which has revealed a slow response time of the system to the reduction of the land-derived nutrient loads. Responsible for that is the low burial efficiency of phosphorus at anoxic conditions and its remobilization from sediments when conditions change from oxic to anoxic. This results in a stoichiometric excess of phosphorus available for organic-matter production, which promotes the growth of N2-fixing cyanobacteria and in turn supports eutrophication. This assessment reviews the available and published knowledge on the biogeochemical functioning of the Baltic Sea. In its content, the paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, and P) external loads, their transformations in the coastal zone, changes in organic-matter production (eutrophication) and remineralization (oxygen availability), and the role of sediments in burial and turnover of C, N, and P. In addition to that, this paper focuses also on changes in the marine CO2 system, the structure and functioning of the microbial community, and the role of contaminants for biogeochemical processes. This comprehensive assessment allowed also for identifying knowledge gaps and future research needs in the field of marine biogeochemistry in the Baltic Sea.Peer reviewe

    Human impacts and their interactions in the Baltic Sea region

    Get PDF
    Coastal environments, in particular heavily populated semi-enclosed marginal seas and coasts like the Baltic Sea region, are strongly affected by human activities. A multitude of human impacts, including climate change, affect the different compartments of the environment, and these effects interact with each other. As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region, and their interrelations. Some are naturally occurring and modified by human activities (i.e. climate change, coastal processes, hypoxia, acidification, submarine groundwater discharges, marine ecosystems, non-indigenous species, land use and land cover), some are completely human-induced (i.e. agriculture, aquaculture, fisheries, river regulations, offshore wind farms, shipping, chemical contamination, dumped warfare agents, marine litter and microplastics, tourism, and coastal management), and they are all interrelated to different degrees. We present a general description and analysis of the state of knowledge on these interrelations. Our main insight is that climate change has an overarching, integrating impact on all of the other factors and can be interpreted as a background effect, which has different implications for the other factors. Impacts on the environment and the human sphere can be roughly allocated to anthropogenic drivers such as food production, energy production, transport, industry and economy. The findings from this inventory of available information and analysis of the different factors and their interactions in the Baltic Sea region can largely be transferred to other comparable marginal and coastal seas in the world

    Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea?** The study reports the results obtained within the framework of the following projects: the statutory activities of the Institute of Oceanology Polish Academy of Sciences theme 2.2, research project No. 2012/05/N/ST10/02761 sponsored by the National Science Centre, and AMBER, the BONUS+EU FP6 Project.

    Get PDF
    Submarine Groundwater Discharge (SGD) is an important yet poorly recognised pathway of material transport to the marine environment. This work reports on the results of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations and loads in the groundwater seeping into the southern Baltic Sea. Most of the research was carried out in the Bay of Puck (2009–2010), while in 2013 the study was extended to include several other groundwater seepage impacted areas situated along the Polish coastline. The annual average concentrations of DIC and DOC in the groundwater were equal to 64.5±10.0 mg C L−1 and 5.8±0.9 mg C L−1 respectively. The carbon specific flux into the Bay of Puck was estimated at 850 mg m−2 yr−1. The loads of carbon via SGD were scaled up for the Baltic Sea sub-basins and the entire Baltic Sea. The DIC and DOC fluxes via SGD to the Baltic Sea were estimated at 283.6±66.7 kt yr−1 and 25.5±4.2 kt yr−1. The SGD derived carbon load to the Baltic Sea is an important component of the carbon budget, which gives the sea a firmly heterotrophic status
    corecore