32 research outputs found

    Electrochemical impedance spectroscopy as a tool for probing the functionality of ion-selective membranes

    Get PDF
    Recent success in lowering of the detection limit of ion-selective electrodes (ISEs) to part-perbillion levels have opened up the possibility for their application in environmental analysis. Its simplicity, low cost, and low power requirement coupled with excellent selectivity and sensitivity make ISEs excellent detecting system in autonomous and deployable sensing devices for routine analysis and as early warning systems. However, the necessity for calibration of detecting systems implies the use of sometimes complicated and costly systems for calibration solution and waste handling, pumps and data acquisition including the labour for system maintenance. Reducing the need for sensor calibration (or its complete elimination) would not only simplify sensing devices and reduce their costs but would allow integration of chemical sensors into the emerging area of wireless sensing networks (WSNs). It is envisioned that this integration will bring new dimensions into chemical sensing and bring benefits in many aspects of human lives. Here, we describe our attempts to address the issue of reducing the need for sensor calibration. The functionality of a typical physical transducer is probed using electrical signals testing its resistance, impedance, conductance etc. We employ a similar strategy and apply relatively simple AC signals to an ion-selective membrane in order to probe its functionality after it has been subjected to conditions that simulate in-situ long-term deployments. For example, we observe the impedance spectra of membranes that have been physically damaged, biofouled and/or have components leached out. Comparing this information with the sensor's potentiometric behaviour, we can draw conclusions regarding the functionality of the devices and their suitability to continue serving as a reliable detectors, for example, in remote locations

    Modification of Carbon Nanomaterials by Association with Poly(3-octylthiophene-2,5-diyl) as a Method of Improving the Solid-Contact Layer in Ion-Selective Electrodes

    No full text
    A new group of carbon nanomaterials modified with poly(3-octylthiophene-2,5-diyl) for solid-contact layers in ion-selective electrodes was obtained. The materials were characterized by scanning electron microscopy and measurement of the contact angle. The modification greatly improved the hydrophobicity of the materials, and the highest contact angle (175°) was obtained for a polymer-modified carbon nanofibers/nanotube nanocomposite. The electrical parameters of the electrodes were determined using the methods of chronopotentiometry and electrochemical impedance spectroscopy. The highest electrical charge capacity was obtained for polymer-modified carbon nanofibers (7.87 mF/cm2). For this material, the lowest detection limit (10−6.2 M) and the best potential reversibility (SD = 0.2 mV) were also obtained in potentiometric measurements

    Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000

    No full text
    This article presents advances in the electrochemical determination of hormones and steroids since 2000. A wide spectrum of techniques and working electrodes have been involved in the reported measurements in order to obtain the lowest possible limits of detection. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used as alternatives to other, more complicated, analytical assays. Still, growing interest in designing a new construction of the working electrodes enables us to prepare new measurement procedures and obtain lower limits of detection. A brief description of the measured compounds has been presented, along with a comparison of the obtained results

    Optimization of Ruthenium Dioxide Solid Contact in Ion-Selective Electrodes

    No full text
    Ruthenium dioxide occurs in two morphologically varied structures: anhydrous and hydrous form; both of them were studied in the scope of this work and applied as mediation layers in ion-selective electrodes. The differences between the electrochemical properties of those two materials underlie their diverse structure and hydration properties, which was demonstrated in the paper. One of the main differences is the occurrence of structural water in RuO2•xH2O, which creates a large inner surface available for ion transport and was shown to be a favorable feature in the context of designing potentiometric sensors. Both materials were examined with SEM microscope, X-ray diffractometer, and contact angle microscope, and the results revealed that the hydrous form can be characterized as a porous structure with a smaller crystallite size and more hydrophobic properties contrary to the anhydrous form. Potentiometric and electrochemical tests carried out on designed GCD/RuO2/K+-ISM and GCD/RuO2•xH2O/K+-ISM electrodes proved that the loose porous microstructure with chemically bounded water, which is characteristic for the hydrous form, ensures the high electrical capacitance of electrodes (up to 1.2 mF) with consequently more stable potential (with the potential drift of 0.0015 mV/h) and a faster response (of a few seconds)

    Voltammetric Determination of Codeine on Glassy Carbon Electrode Modified with Nafion/MWCNTs

    No full text
    A glassy carbon electrode modified with a Nafion/MWCNTs composite is shown to enable the determination of codeine using differential pulse voltammetry in phosphate buffer of pH 3.0. At a preconcentration time of 15 s, the calibration graph is linear in the 0.5 µM (0.15 mg·L−1) to 15 µM (4.5 mg·L−1) concentration range with a correlation coefficient of 0.998. The detection limit at a preconcentration time of 120 s is as low as 4.5 μg·L−1. The repeatability of the method at a 0.6 μg·L−1 concentration level, expressed as the RSD, is 3.7% (for n=5). The method was successfully applied and validated by analyzing codeine in drug, human plasma, and urine samples

    The New Reliable pH Sensor Based on Hydrous Iridium Dioxide and Its Composites

    No full text
    The new reliable sensor for pH determination was designed with the use of hydrous iridium dioxide and its composites. Three different hIrO2-based materials were prepared and applied as solid-contact layers in pH-selective electrodes with polymeric membrane. The material choice included standalone hydrous iridium oxide; composite material of hydrous iridium oxide, carbon nanotubes, and triple composite material composed of hydrous iridium oxide; carbon nanotubes; and poly(3-octylthiophene-2,5-diyl). The paper depicts that the addition of functional material to standalone metal oxide is beneficial for the performance of solid-state ion-selective electrodes and presents the universal approach to designing this type of sensors. Each component contributed differently to the sensors’ performance—the addition of carbon nanotubes increased the electrical capacitance of sensor (up to 400 µF) while the addition of conducting polymer allowed it to increase the contact angle of material changing its wetting properties and enhancing the stability of potentiometric response. Hydrous iridium oxide contacted electrodes exhibit linear response in wide linear range of pH (2–11) and stable potentiometric response (the lowest potential drift of 0.036 mV/h is attributed to the electrode with triple composite material)
    corecore