25 research outputs found

    Draft genome sequences of five clinical <i>Enterococcus cecorum</i> strains isolated from different poultry species in Poland

    Get PDF
    Here, we report five draft genome sequences of Enterococcus cecorum strains that were isolated from different bird species of affected poultry flocks (commercial broilers [CB], broiler breeders [BB], commercial layers [CL], ducks [D], and geese [G]) in Poland

    Draft genome sequences of two commensal <i>Enterococcus cecorum</i> strains isolated from chickens in Belgium

    Get PDF
    Here, we report the draft genome sequences of two commensal Enterococcus cecorum strains (1710s23 and 1711s24), cultivated from the ceca of healthy laying hens originating from different farms in Belgium

    Disseminated hyaline ring granuloma in the omentum of a dog

    No full text
    Abstract Background Hyaline ring granuloma (HRG) is an uncommon histopathologic finding of unsolved etiopathogenesis. According to the exogenous theory, HRG develops due to implantation of foreign material, most probably indigestible plant fragments. HRG is a comparatively rare condition in humans, mostly involving the oral cavity with very rare extraoral locations. Case presentation An 1-year-old mixed-breed dog in good condition was presented for routine ovariohysterectomy. Disseminated HGR were accidentally found in the omental adipose tissue during surgery. Histopathology revealed the presence of ring-like hyaline structures surrounded by granulomatous inflammation including foreign body-type multinucleated giant cells. The histochemical examinations indicated the exogenous plant origin of the foreign material. Conclusions The lesions were similar to the findings in humans with HRG. The definitive diagnosis remains largely based on histopathological examination supported by special histochemical stains. To the best of our knowledge, this is the first case of hyaline ring granuloma reported in a non-human species. Moreover, the omentum is an uncommon location for this condition

    The Use of Bacteriophages in the Poultry Industry

    No full text
    The emergence of multidrug-resistant infections and antibiotic failures have raised concerns over human and veterinary medicine worldwide. Poultry production has had to confront the problems of an alarming increase in bacterial resistance, including zoonotic pathogens. According to the European Food Safety Authority (EFSA), campylobacteriosis and salmonellosis have been the most frequently reported human foodborne diseases linked to poultry. This situation has strongly stimulated a renewal of scientists&rsquo; interest in bacteriophages (phages) since the beginning of the 21st century. Bacteriophages are the viruses of bacteria. They are abundant in nature, and accompany bacteria in each environment they colonize, including human microbiota. In this review, we focused on the use of bacteriophages as therapeutic agents to treat infections and reduce counts of pathogenic bacteria in poultry, as biocontrol agents to eliminate foodborne pathogens on/in food, and also as disinfectants to reduce contamination on food-contact surfaces or poultry carcasses in industrial conditions. Most of the phage-based products are targeted against the main foodborne pathogens, such as Campylobacter jejuni, Salmonella spp., Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Clostridium perfringens. Phages are currently addressed at all stages of the poultry production "from farm to fork", however, their implementation into live birds and food products still provokes discussions especially in the context of the current legal framework, limitations, as well as public health and safety

    The application of the loop-mediated isothermal amplification (LAMP) method for diagnosing Enterococcus hirae-associated endocarditis outbreaks in chickens

    No full text
    Abstract Background Enterococcus hirae is considered a part of the normal intestinal biota of several domestic animals, including poultry. However, this species is also associated with infective endocarditis in chickens, a disease that leads to unexpected deaths and serious economical losses. Enterococcus hirae is identified predominantly with the use of conventional bacteriological methods, biochemical tests and PCR. Rapid, sensitive and specific methods for detecting E. hirae in clinical samples are required in poultry production. The aim of this study was to use the Loop-Mediated Isothermal Amplification (LAMP) for the identification and quantification of E. hirae in heart samples from broiler chickens. Results The specificity of the LAMP method was confirmed for 7 enterococcal strains and 3 non-enterococcal strains. E. hirae was detected in all of the 22 analyzed clinical bacterial isolates and in all of the 9 heart samples. Three sets of primers supported the detection of E. hirae with high sensitivity and specificity within one hour. The highest detection rate of a LAMP product was approximately 7 min for an E. hirae strain and 12 min for a positive heart sample. The detection limit for the E. hirae ATCC 10541 standard was 1.3 × 102 CFU (43.4 fg) or 13.8 copies of the E. hirae genome equivalent per reaction. The reaction was 10-fold more sensitive than conventional species-specific PCR. The LAMP assay supported the determination of the E. hirae load in chicken hearts with endocarditis in field cases. The average number of E. hirae cells in hearts was 5.19 × 107 CFU/g of tissue, and the average number of E. hirae genome equivalents in hearts was 5.51× 106 copies/g of tissue. Bacterial counts were significantly higher in the LAMP assay than in the standard plate count. Conclusions The LAMP assay is a useful diagnostic tool and an effective alternative to conventional methods for the detection of this enterococcal species. The sodA-based LAMP assay supported direct identification of E. hirae from pure cultures and heart samples without previous bacterial cultivation. This is the first study to apply the LAMP method for the purpose of diagnosing E. hirae-associated endocarditis in poultry

    Microorganisms Involved in Hydrogen Sink in the Gastrointestinal Tract of Chickens

    No full text
    Hydrogen sink is a beneficial process, which has never been properly examined in chickens. Therefore, the aim of this study was to assess the quantity and quality of microbiota involved in hydrogen uptake with the use of real-time PCR and metagenome sequencing. Analyses were carried out in 50 free-range chickens, 50 commercial broilers, and 54 experimental chickens isolated from external factors. The median values of acetogens, methanogens, sulfate-reducing bacteria (SRB), and [NiFe]-hydrogenase utilizers measured in the cecum were approx. 7.6, 0, 0, and 3.2 log10/gram of wet weight, respectively. For the excreta samples, these values were 5.9, 4.8, 4, and 3 log10/gram of wet weight, respectively. Our results showed that the acetogens were dominant over the other tested groups of hydrogen consumers. The quantities of methanogens, SRB, and the [NiFe]-hydrogenase utilizers were dependent on the overall rearing conditions, being the result of diet, environment, agrotechnical measures, and other factors combined. By sequencing of the 16S rRNA gene, archaea of the genus Methanomassiliicoccus (Candidatus Methanomassiliicoccus) were discovered in chickens for the first time. This study provides some indication that in chickens, acetogenesis may be the main metabolic pathway responsible for hydrogen sink

    Analysis of genomes of bacterial isolates from lameness outbreaks in broilers

    No full text
    ABSTRACT: We investigated lameness outbreaks at 3 commercial broiler farms in Arkansas. We isolated several distinct bacterial species from Bacterial Chondronecrosis with Osteomyelitis (BCO) lesions from these 3 farms. The results show that BCO-lameness pathogens on particular farms can differ significantly. We characterized genomes for isolates of the 2 most prevalent species, Escherichia coli and Staphylococcus aureus. Genomes assembled for E. coli isolates from all 3 farms were quite different between farms, and most similar to genomes from different geographical locations and hosts. The E. coli phylogenomics suggests frequent host shifts for this species. Genomes for S. aureus isolates from one farm were highly related to those from chicken isolates from Europe. Highly related isolates have also been characterized from chickens in the Arkansas area for at least a decade. Phylogenomics suggest that this S. aureus has been restricted to poultry for more than 40 y. Detailed analysis of genomes from 2 neighboring clades of S. aureus human and chicken isolates, identifies the acquisition of a specific pathogenicity island in the transition from human to chicken pathogen and that pathogenesis for this clade in chickens may depend on this mobile element. Investigation of the evolution of this chicken-restricted clade from 1980 in Ireland, Poland in 2008, Oklahoma in 2010 and Arkansas in 2019, reveals the acquisition of additional virulence determinants including pathogenicity islands. Isolate-specific genome characterizations will help further our understanding of the disease mechanisms of BCO-lameness, a significant animal welfare issue

    The incidence [n (%)] of isolation clinical <i>E</i>. <i>cecorum</i> from different tissue samples depending on the poultry flocks.

    No full text
    <p>The incidence [n (%)] of isolation clinical <i>E</i>. <i>cecorum</i> from different tissue samples depending on the poultry flocks.</p

    Tree showing the genetic similarity between pathogenic <i>E</i>. <i>cecorum</i> isolates from 5 turkey flocks (T) based on PFGE (<i>Sma</i>I) and PCR results (sequences of <i>sodA</i> gene fragment).

    No full text
    <p>The each pulsotype is shown with the corresponding PCR-group (<i>sodA</i>), number of isolate, year of isolation, location of affected flock. Analysis revealed 1 (A) individual pulsotypes comprised 2 T isolates and 2 phylogenetic groups (I–II). Dendogram was constructed based on the Dice similarity coefficient and the UPGMA clustering method. <i>Enterococcus cecorum</i> ATCC 43198 was used as a reference strain.</p
    corecore