61 research outputs found

    SLC1 family of amino acid transporters (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The SLC1 family of sodium dependent transporters includes the plasma membrane located glutamate transporters and the neutral amino acid transporters ASCT1 and ASCT2 [1, 49, 36, 37, 7]

    SLC1 family of amino acid transporters in GtoPdb v.2023.1

    Get PDF
    The SLC1 family of sodium dependent transporters includes the plasma membrane located glutamate transporters and the neutral amino acid transporters ASCT1 and ASCT2 [3, 52, 39, 40, 9]

    SLC1 family of amino acid transporters (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The SLC1 family of sodium dependent transporters includes the plasma membrane located glutamate transporters and the neutral amino acid transporters ASCT1 and ASCT2 [1, 49, 36, 37, 7]

    Neuro-nutraceuticals:the path to brain health via nourishment is not so distant

    Get PDF
    In this Special Issue on "Nutraceuticals: Molecular and Functional Insights into how Natural Products Nourish the Brain", the editors bring together contributions from experts in nutraceutical research to provide a contemporary overview of how select chemically identified molecules can beneficially affect brain function at the molecular level. Other contributions address key emergent issues such as bioavailability, formulation, blood brain permeability, neuronal health and inflammation that impact upon how nutraceuticals ultimately leverage the brain to function better. Whilst nutraceutical is used as marketing term, it has no regulatory definition, and there is a continuing need for licensing authorities to ensure that adequate guidelines exist pertinent to the safety to guide consumers internationally. In terms of the benefit of nutraceuticals is it clear that some naturally occurring molecules can be advantageous to both the young and aged brain, and that they have actions that ultimately can be directed to aid either in the improvement of cognition or in the management of debilitating neurodegenerative and neuropsychiatric condition

    Neuro-nutraceuticals: Further insights into their promise for brain health

    Get PDF
    In this Special Issue on “Nutraceuticals: Molecular and Functional Insights into how Natural Products Nourish the Brain”, the editors bring together contributions from experts in nutraceutical research to provide a contemporary overview of how select chemically identified molecules from natural products can beneficially affect brain function at the molecular level. Other contributions address key emergent issues such as bioavailability, neuronal health, inflammation and the holistic benefit of multi-targeted actions that impact upon how nutraceuticals ultimately leverage the brain to function better. In terms of the benefit of nutraceuticals it is clear that some naturally occurring molecules can be advantageous to both the young and aged brain, and that they have actions that ultimately can be directed to aid either in the improvement of cognition or in the management of debilitating neurodegenerative and neuropsychiatric condition

    Gene profiling identifies commonalities in neuronal pathways in excitotoxicity : evidence favouring cell cycle re-activation in concert with oxidative stress

    Get PDF
    The fulltext of this publication will be made publicly available after relevant embargo periods have lapsed and associated copyright clearances obtained.Excitotoxicity, induced by the aberrant rise in cytosolic Ca(2+) level, is a major neuropathological process in numerous neurodegenerative disorders. It is triggered when extracellular glutamate (Glu) concentration reaches neuropathological levels resulting in dysregulation and hyper-activation of ionotropic glutamate receptor subtype (iGluRs). Even though all three members of the iGluRs, namely N-methyl-d-aspartate (NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR) and kainate (KAR) receptors are implicated in excitotoxicity, their individual contributions to downstream signaling transduction have not been explored. In this study, we report a comprehensive description of the recruitment of cellular processes in neurons upon iGluR activation during excitotoxicity through temporal (5h, 15h, and 24h) global gene profiling of AMPA, KA, NMDA, and Glu excitotoxic models. DNA microarray analyses of mouse primary cortical neurons treated with these four pharmacological agonists are further validated via real-time PCR. Bi-model analyses against Glu model demonstrate that NMDARs and KARs play a more pivotal role in Glu-mediated excitotoxicity, with a higher degree of global gene profiling overlaps, as compared to that of AMPARs. Comparison of global transcriptomic profiles reveals aberrant calcium ion binding and homeostasis, organellar (lysosomal and endoplasmic reticulum) stress, oxidative stress, cell cycle re-entry and activation of cell death processes as the main pathways that are significantly modulated across all excitotoxicity models. Singular profile analyses demonstrate substantial transcriptional regulation of numerous cell cycle proteins. For the first time, we show that iGluR activation forms the basis of cell cycle re-activation, and together with oxidative stress fulfill the "two-hit" hypothesis that accelerates neurodegeneration

    Walking the tightrope: proteostasis and neurodegenerative disease

    Get PDF
    A characteristic of many neurodegenerative diseases, including Alzheimer\u27s disease (AD), Parkinson\u27s disease (PD), Huntington\u27s disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-β, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation. A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease

    Glutathione monoethyl ester prevents TDP-43 pathology in motor neuronal NSC-34 cells

    Get PDF
    © 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (August 2017) in accordance with the publisher’s archiving policyOxidative stress is recognised as central in a range of neurological diseases including Amyotrophic lateral sclerosis (ALS), a disease characterised by fast progressing death of motor neurons in the brain and spinal cord. Cellular pathology includes cytosolic protein aggregates in motor neurons and glia of which potentially cytotoxic hyper-phosphorylated fragments of the Transactive response DNA Binding Protein 43 kDa (TDP-43) constitute a major component. This is closely associated with an additional loss of nuclear TDP-43 expression indicating a “loss of function” mechanism, accelerating motor neuron (MN) loss. Furthermore, mutations in TDP-43 cause familial ALS and ALS-like disease in animal models. In this study, we investigated the role of glutathione (GSH) in modulating oxidative stress responses in TDP-43 pathology in motor neuron NSC-34 cells. Results demonstrate that depletion of GSH produces pathology similar to that of mutant TDP-43, including occurrence of cytosolic aggregates, TDP-43 phosphorylation and nuclear clearing of endogenous TDP-43. We also demonstrate that introduction of mutant TDP-43A315T and silencing of endogenous TDP-43, but not overexpression of wild-type TDP-43, result in similar pathology, including depletion of intracellular GSH, possibly resulting from a decreased expression of a regulatory subunit of ɣ-glutamylcysteine ligase (GCLM), a rate limiting enzyme in GSH synthesis. Importantly, treatment of mutant cells with GSH monoethyl ester (GSHe) that directly increases intracellular GSH and bypasses the need for GSH synthesis, protected against mutant-induced TDP-43 pathology, including reducing aggregate formation, nuclear clearance, reactive oxygen species (ROS) production and cell death. Our data strongly suggest that oxidative stress is central to TDP-43 pathology and may result from a loss of function affecting GSH synthesis and that treatments directly aimed at restoring cellular GSH content may be beneficial in preventing cell death in TDP-43-mediated ALS

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22:Transporters

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15543. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
    • …
    corecore