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Abstract  

Oxidative stress is recognised as central in a range of neurological diseases including 

Amyotrophic lateral sclerosis (ALS), a disease characterised by fast progressing death of 

motor neurons in the brain and spinal cord. Cellular pathology includes cytosolic protein 

aggregates in motor neurons and glia of which potentially cytotoxic hyper-phosphorylated 

fragments of the Transactive response DNA Binding Protein 43 kDa (TDP-43) constitute a 

major component. This is closely associated with an additional loss of nuclear TDP-43 

expression indicating a “loss of function” mechanism, accelerating motor neuron (MN) loss. 

Furthermore, mutations in TDP-43 cause familial ALS and ALS-like disease in animal 

models. In this study, we investigated the role of glutathione (GSH) in modulating oxidative 

stress responses in TDP-43 pathology in motor neuron NSC-34 cells. Results demonstrate 

that depletion of GSH produces pathology similar to that of mutant TDP-43, including 

occurrence of cytosolic aggregates, TDP-43 phosphorylation and nuclear clearing of 

endogenous TDP-43. We also demonstrate that introduction of mutant TDP-43A315T and 

silencing of endogenous TDP-43, but not overexpression of wild-type TDP-43, result in 

similar pathology, including depletion of intracellular GSH, possibly resulting from a 

decreased expression of a regulatory subunit of ɣ-glutamylcysteine ligase (GCLM), a rate 

limiting enzyme in GSH synthesis. Importantly, treatment of mutant cells with GSH 

monoethyl ester (GSHe) that directly increases intracellular GSH and bypasses the need for 

GSH synthesis, protected against mutant-induced TDP-43 pathology, including reducing 

aggregate formation, nuclear clearance, reactive oxygen species (ROS) production and cell 

death. Our data strongly suggest that oxidative stress is central to TDP-43 pathology and may 

result from a loss of function affecting GSH synthesis and that treatments directly aimed at 

restoring cellular GSH content may be beneficial in preventing cell death in TDP-43-

mediated ALS.  
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1. Introduction 

Cytoplasmic accumulation of TDP-43 is a hallmark feature of many neurodegenerative 

disorders including Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative condition 

characterised by a progressive death of upper and lower motor neurons (MNs) rapidly leading 

to muscle paralysis and death within a few years of diagnosis (Turner et al., 2013; Kwong et 

al., 2007). There is no cure or effective treatment available. ALS is either familial, with a 

predominantly autosomal dominant inheritance pattern, or sporadic (constituting 

approximately 90% of all cases), with no identifiable genetic cause (Robberecht and Philips, 

2013). Cellular pathology include protein aggregation, mitochondrial dysfunction, increased 

content of reactive oxygen species (ROS) and glutamate-mediated excitotoxicity (Rothstein 

2009). 

Histopathologically, a vast majority of ALS cases display cytoplasmic protein inclusions 

containing the protein Transactive response DNA Binding Protein 43 kDa (TDP-43), a DNA- 

and RNA-binding protein encoded by the TAR DNA Binding Protein (TARDBP) gene. TDP-

43 is predominately localised to the nucleus where it participates in regulating transcription 

(Bose et al., 2008), but is also found in the cytosol where it has a regulatory role in translation 

and post-transcriptional modifications of pre-mRNA (Buratti and Baralle, 2008). Impaired 

protein processing leading to cytosolic aggregation of ubiquitinated and phosphorylated C-

terminally truncated fragments of TDP-43 are cellular characteristics of TDP-43 

proteinopathies (Kwong et al., 2007; Geser et al., 2008; Neumann et al., 2006). TPD-43 

pathology is present in 95% of all ALS cases and in about >60% of patients with 

frontotemporal dementia (Neumann et al., 2007; Mackenzie, 2007). 

Mutations in the TARDBP gene cause familial forms of ALS in humans and an ALS-like 

phenotype in transgenic animals (Gitcho et al., 2008; Kabashi et al., 2008; Rutherford et al., 
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2008; Sreedharan et al., 2008; Stribl et al., 2014; Wegorzewska and Baloh, 2011). In contrast, 

over expression of human wild-type TDP-43 has recently been demonstrated not to result in 

an ALS phenotype in rodents (Mitchell et al. 2015).  

Even in the absence of genomic mutations, TDP-43 is found in cytosolic aggregates in 

neurons and astrocytes, and the pathology of these cases is identical to those with a genetic 

background, strongly suggesting that exogenous factors induce pathogenic modifications of 

TDP-43. Cytosolic aggregation of TDP-43 is associated with disruption of normal cellular 

processes including protein degradation, response to oxidative stress and changes in 

mitochondrial bioenergetics (Stribl et al., 2014; Tashiro et al., 2012; Walker et al., 2013). 

Moreover, TDP-43 pathology is also associated with a loss of nuclear TDP-43, raising the 

possibility that TDP-43 pathology is mediated through a “loss of function” mechanism (Arai 

et al., 2006; Neumann et al., 2006). This concept is supported not only from the findings in 

this study but also from previous studies where silencing of TDP-43 result in cellular changes 

similar to those mediated by the introduction of TDP-43 mutants (Kabashi et al. 2010).  

Oxidative damage plays a central role in cell demise in a range of neurodegenerative 

conditions including ALS (Muyderman and Chen, 2014). Cells with a high energy demand, 

such as motor neurons, constantly produce the radical superoxide as a by-product of oxidative 

metabolism and depend heavily on cellular processes as mediated by superoxide dismutase 

(SOD), catalase and glutathione (GSH)-dependent processes to minimize oxidative damage. 

SOD mediates the conversion of superoxide to hydrogen peroxide, which is then further 

detoxified by cytosolic catalase or GSH. In this context GSH directly detoxifies ROS in 

addition to its role as a substrate for several peroxidases (Dringen, 2000; Sims and 

Muyderman, 2010;Sims et al., 2004). We have previously demonstrated the importance of 

GSH in maintaining viability in several neural cell types, including those carrying ALS-

related mutations (Muyderman et al., 2009). We have also shown that depletion of this 
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antioxidant directly results in mitochondrial dysfunction, ROS accumulation and cell death 

(Sims et al., 2004; Muyderman et al., 2007; Muyderman et al., 2004).  

 

In ALS, experimentally decreased GSH levels enhance disease progression in transgenic 

SOD1G93A mice (Vargas et al., 2011) and loss of total GSH content has been reported in 

neuronal cell lines carrying the same mutation (Rizzardini et al., 2003). Moreover, decreased 

levels of oxidised GSH are seen in cerebrospinal fluid from ALS patients (Tohgi et al., 1999) 

and it was recently shown that this patient population also have reduced GSH content in 

motor cortex (Weiduschat et al., 2014). In addition, redox homeostasis is impaired in 

transgenic TDP-43 mice (Caccamo et al., 2013) and pharmacological depletion of GSH 

promotes cytosolic translocation of TDP-43 in cell culture models (Iguchi et al., 2013).   

 

In the present study, we demonstrate that expression of mutant TDP-43, and the loss of 

endogenous TDP-43, produce disturbed production of GSH resulting in increased ROS levels 

and cell death which, more importantly, could be prevented by treatments that directly 

increases cellular GSH without the need for de novo synthesis. 

 

2. Materials and Methods 

2.1 Regents  

All chemicals were of analytical grade and obtained from Sigma (St. Louis, MO) unless 

stated otherwise. Glutathione monoethyl ester (GSHe) and ethacrynic acid (EA) were 

purchased from Chemodex (St Gallen, Switzerland). Tissue culture reagents, propidium 

iodide and calcein-AM were obtained from Invitrogen (San Diego, CA). NSC-34 cells were 

provided by Professor Neil Cashman (University of British Columbia, Vancouver, Canada). 

Cell culture media and antibiotics and trypsin-EDTA were supplied by SIGMA. Fetal Bovine 
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Serum, N2 supplement were purchased from GIBCO (Life Technologies, San Diego), while 

plastic and glass culture ware was obtained from Griener (cellstar/Bio-One) purchased 

through SIGMA. 12mm Glass coverslips (12mm) were supplied by Thermo Fisher Scientific 

Inc. (Waltham, MA). 

 

2.2 Cell cultures 

Mouse NSC-34 motor neuron-like cell were grown in Dulbecco's Modified Eagle's Medium 

(DMEM), supplemented with 10% FBS, 1% L-glutamate and 1% mix of streptomycin and 

penicillin, until 80-90% confluent in a humidified atmosphere of 37°C in 5% CO2. Media 

was changed every third day and cells were passaged when confluent. Cells were subcultured 

every 3-4 days and not used beyond passage 24. In selected experiments, differentiation was 

induced by the removal of serum from the culture medium and the addition of 1% N2 

supplement media (DMEM, 1% FBS, 1% P/S, 1% L-glutamine and 1% N2 supplement. 

Differentiation was defined as the acquirement of a motor neuron-like morphology.  

 

2.3 Transfection of NSC-34 cells 

NSC-34 cells were transfected using nucleofection following the instructions from the 

manufacturer with minor modifications. In short, semi-confluent cultures were trypsinized 

(0.05% (w/v) trypsin, 0.02 % EDTA in PBS pH 7.4 for 3 min at 37°C), pelleted by 

centrifugation at 90 g for 10 min, re-suspended in Hank’s HEPES-buffered salt solution 

(HBSS; in mM: 137 NaCl, 5.4 KCl, 0.41 MgSO4, 0.49 MgCl2, 1.26 CaCl2, 0.64 KH2PO4, 

3.0 NaHCO3, 5.5 glucose, and 20 HEPES, pH 7.4) and counted in a haemocytometer. Cells 

(2.5 x 106) were mixed with 100 µl of Nucleofector solution (Nucleofector Kit V, Lonza, 

Cologne, Germany) and transferred to the nucleofection cuvette. Plasmid DNA was added to 

the mixture in a concentration of 1 µg per 106 cells and the cell suspension was nucleofected 
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using program U-029. Immediately after nucleofection, the cells were re-suspended in full 

culture medium, re-counted and plated onto poly-D-lysine and collagen coated coverslips or 

in poly-L-lysine coated culture plates. Culture medium was replaced 4 hours after 

nucleofection and every second day thereafter.  

 

2.4 Plasmid construction 

Plasmids encoding for the TDP-43A315T mutation, human wild-type TDP-43 and the reporter 

gene mCherry only were prepared as previously described (Perera et al., 2014). Down-

regulation of TDP-43 expression was performed by transfection of NSC-34 cells with a 

custom made miRNA generating plasmid directed at TDP-43 expression at a concentration of 

2 µg/106 cells (BLOCK-iT™ Pol II miR RNAi Expression Vector with EmGFP under a 

human CMV promoter). Four constructs were made and validated by Western blot and semi-

quantified against GAPDH expression. Polymerase chain reaction was used to ensure 

insertion of the miRNA sequence, primers used were EmGFP forward (5’GGCATGGACGA 

GCTGTACAA 3’) and miRNA reverse (5’ACAAAGTGGGTTGATCTAGAG 3’). All 

plasmids were then sequenced and analysed under Vector NTI® software (Invitrogen, San 

Diego, USA). The construct producing the highest degree of knock-down (74 ± 6%; n=5) was 

used in subsequent studies. The miRNA cassette for this construct contained the following 

sequence: 5'TTCAGCATTGGATATATGCACGTTTTGGCCACTGACTGACGTGCATA 

TCCAATA3'. Control plasmid contained the reporter gene only or a non-targeting miRNA 

(miRNAControl, Invitrogen).  

 

2.5 Immunocytochemistry 

Immunocytochemistry was performed using antibodies directed at the full length TDP-43 

(polyclonal, 1:100, Santa Cruz, CA, USA) and the normally anti-phosphorylated TDP-43-
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serine 409/410 residues (pTDP-43; 1:500, Cosmos Bio, USA). Hoechst 33258 was used to 

visualize nuclei (1:5000, Invitrogen). In short, cells were washed in PBS and fixed for 20 min 

at 4˚C in 4% paraformaldehyde, washed in PBS and blocked for 30 min in PBS-BSA (1%)-

Triton X-100 (0.2%). Cells were then incubated with primary antibodies overnight at 4˚C 

followed by washes in blocking buffer and 45 min exposure to secondary antibodies. 

Confocal images were captured using a Leica SP5 Spectral Confocal Microscope (Leica 

Microsystems, Wetzlar, Germany) and processed using ImageJ. Numbers of cells processed 

for image analysis were 250-350 per experiment. 

 

2.6 Cellular fractionation 

Nuclear and cytosolic fractions were produced using the Qproteome Cell Compartment Kit, 

(Cat#37502, QIAGEN Pty, Ltd., Hilden, Germany) following the manufacturer’s 

instructions. Histone H3 and GAPDH were used as markers for nuclear and cytosolic 

fractions respectively: while nuclear fractions contained no GAPDH, cytosolic fractions 

contained no Histone H3 as evaluated using Western Blotting (see Fig. 5b). 

2.7 Western blot 

Western blot was conducted using Nupage® Novex® 4-12% Bis-Tris gel with 1.0 mm x 10 

wells by Invitrogen ™ mounted on X-cell Surelock ® electrophoresis cell apparatus, and 

nitrocellulose membranes with 0.45mm pore size by Invitrogen, following protocols as 

prescribed by manufacturer.  Briefly, cells were washed in PBS, lysed in sodium dodecyl 

sulphate (SDS) and then heated at 70°C for 10 min before being subjected to a 4% SDS-

PAGE and transferred to a PDVF membrane. Membranes were incubated with primary 

antibodies against TDP-43 (1:250 Santa Cruz Biotechnologies, CA, USA), pTDP-43, (1:800, 

Cosmo Bio Co., LTD, Japan) and (GAPDH 1:2000, Applied Biosystems, Victoria, Australia) 

followed by biotinylated secondary antibody (1:3000, Vector Laboratories). Membranes were 
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imaged for HRP chemiluminescence using a Fujifilm LAS4000 Imager. Densitometry was 

performed using FujiFilm Global Multigauge (R) software. Total protein was calculated 

using Carestream image analysis from the total protein transferred to the blotting paper and 

imaged with Bio-Rad EZ Doc Gel Imager and used for normalisation.  

2.8 RNA isolation and qPCR 

High-quality RNA was isolated using a phenol/chloroform based method to separate RNA 

(Trizol) and further purification using column based isolation (RNeasy Mini Lit, Qiagen, 

Heiden, Germany). In short, cells were disintegrated and lysed using 1ml Trizol and a tissue 

lyser (Qiagen, Heiden, Germany, 3 min, 30 Hz). Chloroform (200 µl) was added to the 

solution, mixed for 30 s and after 3 min at room temperature centrifuged (5 min, 4°C, 12,000 

rpm). The aqueous supernatant was used to isolate total RNA using a column based method 

including on-column DNAse digestion (RNeasy Mini Kit, Qiagen). Quantity and quality of 

the RNA were determined using a spectrophotometer (NanoDrop, Thermo Scientific, 

Australia) and a lab-on-chip system (Bioanalyzer, Agilent Technologies, Australia). Only 

RNA samples with RNA integrity numbers of higher than 7 were used for subsequent 

analysis. cDNA was synthesized using 1 µg of total RNA (iScript Reverse Transcriptase, 

BioRad, Australia) and used for subsequent qPCR using TaqMan and SybrGreen based 

qPCR. TaqMan primer assays were TDP43/Tardbp, (Mm0125750) and the reference gene 

Hprt (Mm01545399_m1), both Life Technologies. For SybrGreen qPCR we used mCherry, 

forward primer: CACTACGACGCTGAGGTCAA, reverse primer: 

TAGTCCTCGTTGTGGGAGGT; and the reference gene, forward primer: 

AGACGGCCGCATCTTCTTGTGC, reverse primer: GCCACTGCAAATGGCAGCCC. 

qPCR was performed using Power SYBR Green PCR master mix (Applied Biosystems) or 

TaqMan Gene Expression master mix (Applied Biosystems) and a StepOnePlus cycler. 

Relative expression levels were normalized to Hprt.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 

 

 

 

2.9 Assessing cell viability 

Cell survival was assessed immediately after nucleofection using trypan blue exclusion.  

Cells were resuspended in HBSS, containing 0.2% trypan blue (Sigma), incubated for 5 min 

and counted in a haemocytometer. Blue cells were considered non-viable whereas unstained 

cells were considered viable. Cell viability was also assessed at 24, 48 and 72 h after 

nucleofection using calcein-AM or propidium iodide (PI) staining. Briefly, cells were washed 

in serum free culture media and incubated for 15 min at 37°C with 5% CO2 with calcein 

green-AM (1 µM) or PI (25 µM). Hoechst 33258 (1:1000) was used to visualize chromatin 

condensation and apoptotic bodies if present. The proportion of PI positive or calcein green-

AM positive cells as well as cells with apoptotic-like features (chromatin condensation, 

neuritic blebbing and presence of apoptotic bodies) were assessed using standard 

fluorescence microscopy after Hoechst 33258 staining.  

 
2.10 Ethacrynic Acid and GSH monoethyl ester treatment 

EA (70µM) or ethanol vehicle control (Eth, 1%) was prepared and diluted in culture media 

(final ethanol concentration <0.25%). Cells were treated in flasks or on coverslips for 5 h. 

GSHe was diluted directly in full culture medium to a concentration of 5 mM. Control 

experiments were performed with vehicle only.  

 
2.11 Quantifying cellular GSH content 

A cellular GSH assay kit supplied by Abcam (ab138881) was used to determine total, 

reduced and oxidised GSH. Frozen cell pellet was first thawed and suspended in Tris-EDTA 

lysis buffer. Following suspension in lysis buffer, cells were sonicated for 2 min in a 10 sec 

on/off sonication protocol. After sonication, cells were then centrifuged at 14,000 x g for 20 
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min and the supernatant was collected. Using a microplate reader, total, reduced and oxidized 

GSH measurements were calculated according to manufacturer’s protocol. 

 
 

2.12 Detection of Reactive Oxygen Species 

To determine presence of reactive oxygen species produced by cells, a commercially 

available assay to detect ROS was used (Abcam - ab113851). To determine cellular ROS, 5 x 

104 of transfected cells were plated per well in a 96-well plate and allowed to proliferate for 3 

days. The assay was carried out according to manufacturer’s instructions 3 days post-

transfection.  

2.13 Protein determination 

Protein concentration assays were conducted using the DC BioRad protein assay kit (BioRad 

Laboratories, Hercules CA) following protocols as described by the manufacturer and 

absorbance read at 750 nm using a Perkin Elmer Victor ® X4 Multilabel Plate Reader. 

 
2.13 Statistical analyses  

Results are presented as mean ± SD. Each experimental condition was tested on cultures 

obtained from at least 3 independent passages of cells. Individual values were determined as 

the average of results obtained from at least three identically treated culture plates from the 

same experimental day and compared to control-treated sister cultures. Statistical analyses 

were performed on raw data by Student t-test or by one-way ANOVA followed by Student-

Newman-Keuls test. P values <0.05 were considered significant. 

 

3. Results 

3.1 EA causes depletion of GSH in NSC-34 cells 
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NSC-34 cells had an average total GSH concentration of 30 ± 6 nmol/mg protein with a 

reduced (GSH) to oxidised  glutathione (GSSG) ratio of 46 (n=5: Figure 1A). Exposure to 

EA (70µM, 5 h) significantly reduced total GSH content to 7.3 ± 2.8 nmol/mg which was 

associated with a decrease in GSH:GSSG ratio from 46 to 9 (Fig. 1A). Vehicle treatment 

(Eth; 1%, 5 hrs) alone did not significantly alter GSH content or the GSH: GSSG ratio (Fig. 

1A). Consistent with these results, EA treatment resulted in a significant increase in cellular 

ROS content (Fig. 1B), but did not result in impaired cell viability at this time point (5 hr: 

p>0.05 data not shown).  

 

3.2 EA-mediated depletion of GSH results in redistribution of endogenous nuclear TDP-43 

and in the expression of pTDP-43.  

 

While non-treated NSC-34 cells showed primarily nuclear localization of TDP-43 and low 

levels of pTDP-43 (Fig.  2A), the majority of EA-treated cells displayed a cytoplasmic 

distribution of TDP-43 associated with nuclear clearance of the protein (Fig. 2B) together 

with a significant increase in extra nuclear pTDP-43 immunoreactivity (Fig. 2C). To verify 

that EA had no direct effect on TDP-43 distribution cells were co-incubated with EA together 

with the cell permeable GSHe (5 mM), which counteracted EA-mediated GSH depletion 

(Fig. 1A), prevented increased ROS production (Fig. 1B) and cytoplasmic re-distribution and 

nuclear clearance of TDP-43 in these cells. GSHe was also assessed for cytotoxicity using 

calcein/PI as described under Methods; data demonstrated that exposure of normal NSC-34 

cells to concentrations not exceeding 7.5 mM did not result in decreased cell viability (data 

not shown). Thus, 5 mM GSHe was used throughout the remaining study.  

 

3.3 Transfection of NSC-34 cells 
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To test the impact of ALS-linked mutant TDP-43 on GSH expression, NSC-34 cells were 

transfected with the mCherry-tagged human TDP-43A315T mutation, the human wild-type 

TDP-43 or with a control plasmid encoding for the reporter gene mCherry using 

nucleofection. This procedure resulted in transgene expression within 24 h reaching a 

maximum transfection efficiency of 56 ± 9%, 67 ± 11 % and 69 ± 7 % at 72 hr post-

transfection, respectively (n=3). Cell death, assessed based on the ability of these cells to 

retain calcein fluorescence, nuclear incorporation of propidium iodide or the presence of 

apoptotic-like morphology changes (as described earlier), at 24, 48 or 72 h after transfection 

was not significantly different in cultures nucleofected with either wild-type TDP-43 or with 

the control plasmid compared with non-nucleofected cultures (n=5: p>0.05), but higher in 

cells expressing the TDP-43 mutant (Fig. 3). qPCR showed no significant differences in 

expression levels of mutant versus wild-type TDP-43 (n=3; ANOVA; p>0.05).3.4 Cytosolic 

redistribution of TDP-43 in cells expressing the A315T mutant 

Transfection of NSC-34 cells with TDP-43A315T resulted in cytosolic redistribution of TDP-

43 in 21 ± 5 % of the cells, while cells expressing the reporter gene only showed exclusive 

nuclear localization of TDP-43 (Fig. 4A andB; n=5). Nuclear TDP-43 levels were also 

quantified using Western Blot after cellular fractionation. In cells expressing TDP-43A315T, 

there was a significant decrease in nuclear TDP-43 expression compared to control (Fig. 5A). 

Control experiments verified the purity of these fractions using Histone 3 and GAPDH as 

markers for nuclear and cytosolic fractions respectively (figure 5b). In these cells the 

cytosolic fraction contained 6 ± 2 % of total TDP-43 content while the nuclear fraction 

contained 94 ± 5% compared to a > 65% decrease in nuclear TDP-43 content in cells carrying 

the mutant (Fig. 5A and B).  

3.5 GSH is depleted in cells expressing the TDP-43A315T mutation. 
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TDP-43A315T expressing cells had a total GSH concentration of 5 ± 1 nmol/mg protein (n=5) 

representing a >80% decrease compared to the cells transfected with vector alone where then 

level was 24 ± 4 nmol/mg protein. Values for cells expressing wild-type TDP-43 were 28 ± 6 

nmol/mg protein relative to non-transfected cells at 31 ± 3 nmol/mg protein (n=3). GSSG 

accounted for 15% of total GSH concentration in A315T transfected cells compared to less 

than 3% in non-transfected cells and in cells transfected with the control plasmids (Fig. 1A). 

The GSH: GSSG ratio in A315T transfected cells was 6.25 compared to that of control 

transfected cells of 55. As for EA-treated cells, the introduction of the TDP-43A315T mutation, 

but not wild-type TDP-43, resulted in significantly increased ROS levels as assessed 3 days 

post transfection compared to that of control cells (Fig. 1B). Depletion of GSH and increased 

levels of ROS content were closely associated with a decrease in cell viability in cells 

carrying mutant TDP-43 (Fig. 3). Furthermore, based on inconsistencies in GAPDH 

expression used as a loading control, we also assessed if TDP-43A315T affected the expression 

of this key enzyme in glycolysis. Results show that there was a five-fold decrease in GAPDH 

expression in cells carrying the TDP-43A315T mutant compared to control (Fig. 6). Hence, 

throughout this study, Western Blot results were normalised relative to total protein in the 

sample after using stain-free gels processed by Carestream image analysis and Bio-Rad EZ 

Doc Gel Imager. 

3.6 Restoring cellular GSH content prevents TDP-43 pathology 

Next, we addressed whether increasing availability of GSH in mutant TDP-43A315T 

transfected cells reduced TDP-43 pathology. NSC-34 cells transfected with TDP-43A315T or 

with the control vector were treated with 5 mM GSHe starting 3 h post transfection. The 

results demonstrated that early restoration of GSH content prevented nuclear loss of TDP-43 

(Fig. 4 and 5), reducing both ROS content (Fig. 1B) and cell death (Fig. 3). Moreover, GSHe 

treatment also normalised GAPDH content in cells carrying the A315T mutation (Fig. 6).  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

 

Next, we investigated plausible mechanisms behind GSH depletion in cells carrying the 

A315T mutation by determining the expression of GSH-related proteins using Western blot. 

While there were no significant changes in GSH reductase or GSH peroxidase (data not 

shown), the results showed a several-fold decrease in the expression of the regulatory subunit 

of GCLM (Fig. 7) indicative of a severely impaired ability to synthesise GSH. 

 

 

 3.7 GSH depletion in TDP-43 pathology is mediated through a loss of function mechanism. 

To establish if a loss of TDP-43 expression would result in similar disturbances to GSH 

homeostasis we silenced endogenous TDP-43 expression in untreated NSC-34 cells (Fig. 8). 

Down-regulation of TDP-43 expression was performed by transfection of NSC-34 cells with 

1 µg/106 cells of four custom-made plasmids generating micro RNA (miRNA: 508-511) 

directed against TDP-43 mRNA (BLOCK-iT™ Pol II miR RNAi Expression Vector with 

EmGFP under a human CMV promoter). Controls were treated with a plasmid generating a 

non-targeting miRNA (miRNAControl, Invitrogen) and changes in TDP-43 expression were 

determined by immunoblotting. Silencing of TDP-43 expression using the miRNA construct 

with most pronounced effect resulted in an overall 50% decrease in protein expression in 

transfected cultures as assessed using western blot. This decrease corresponded to a near total 

loss of TDP-43 in individual cells expressing the construct (Fig. 8). Silencing of TDP-43 

resulted in a significant decrease of GSH content (Fig. 9), several-fold increase in ROS 

production, and substantially increased cell death (Fig. 1B and 2). However, in contrast to 

cells expressing the TDP-43A315T mutation, cell death were not preserved in these cells after 

treatment with GSHe (Fig. 3), suggesting that a total depletion of TDP-43 is lethal in NSC-34 

cells involving additional mechanisms in addition to ROS accumulation. Still, these data are 

consistent with the concept that a loss of function of TDP-43 directly results in diminished 
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GSH production, increased ROS production potentially leading to the aggravation of TDP-43 

pathology. 

4. Discussion 

The present study has identified conditions under which GSH in neuronal cells expressing 

TDP-43A315T mutant is essentially depleted, resulting in increased ROS production, TDP-43 

nuclear-to-cytosolic redistribution and cell death. This study provides the first direct evidence 

for a critical role of cellular GSH in preserving neuronal viability in TDP-43 pathology. Loss 

of GSH as a result of the presence of this mutation, or in response to the depletion of 

endogenous TDP-43, resulted in increased intracellular ROS levels, cell death and cytosolic 

redistribution of TDP-43 whereas protection against mutant TDP-43-mediated cytotoxicity 

was provided by restoration of intracellular GSH using GSHe. Overexpression of human 

wild-type TDP-43 did not result in any changes in GSH content or in ROS production. This is 

consistent with a recent study demonstrating that exclusive overexpression of wild-type TDP-

43 in transgenic mice does not result in an ALS-like phenotype (Mitchell et al., 2015). 

Our results also indicated that dysregulation of TDP-43 may result from impaired expression 

of theGCLM, responsible for GSH synthesis, subsequent GSH depletion and increase in ROS 

levels. Although this evidence does not rule out other molecular mechanisms, a loss of  γ-

glutamylcysteine ligase activity may explain the disappointing results in previous attempts 

aimed at enhancing antioxidant defence processes by providing GSH precursors in ALS 

(Andreassen et al., 2000). Other plausible explanations include a reduction in the activity of 

the sodium-dependent excitatory amino acid transporter 1 that is responsible for GSH 

precursor uptake into these cells. This issue was not addressed in the current study but is the 

subject of ongoing investigations. In theory, it is also possible that cellular GSH content can 

be affected by release of oxidized GSH into the culture medium. This is a protective 
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mechanism preventing accumulation of this potentially oxidising agent (Dringen and 

Hirrlinger, 2003). However this was not supported by the results in the current study.  

Oxidative stress, like protein aggregation, constitutes a key pathogenic mechanism of cell 

death in ALS. In support of this standpoint, post-mortem analyses consistently demonstrate 

oxidative damage and markers of oxidative damage are increased in plasma, urine and CSF 

of ALS patients (Muyderman and Chen, 2014; D'Amico et al., 2013). In addition,  

experimentally increased oxidative stress load accelerates disease progress in animal models 

of ALS (D'Amico et al., 2013).  

A majority of ALS cases (>95%) are associated with cytosolic inclusions containing TDP-43 

and the relocation of this protein from the nuclei to the cytoplasm, changes that are likely to 

make a significant contribution to cellular dysfunction and subsequent pathology. In addition 

to changes in protein folding and degradation, cytosolic accumulation of TDP-43 causes 

oxidative stress and mitochondrial dysfunction (vide supra). Given that GSH plays a critical 

role in cellular defence against oxidative stress in various neurodegenerative conditions, it is 

surprising that its role in ALS remains poorly understood. Especially considering that redox-

mediated signalling previously has been linked to the regulation of TDP-43 and that oxidative 

stress promotes TDP-43 cross-linking via cysteine oxidation and disulphide bond formation 

leading to decreased TDP-43 solubility (Cohen et al., 2012). 

In this study we reproduced the finding of a previous study demonstrating that depletion of 

GSH results in increased cytosolic aggregation of TDP-43 (Iguchi et al., 2013) and expanded 

on these studies to demonstrate that the content of GSH in cells carrying mutant TDP-43 is 

not optimal and that restoring this antioxidant pool, using a treatment that does not require 

GSH synthesis, prevented pathology. 
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Treatment with GSHe rapidly restored intracellular GSH levels and prevented TDP-43 

pathology in NSC-34 cells carrying TPD-43A315T. In contrast to GSH, which is poorly 

transported into cells and do not pass the blood brain barrier, GSHe is cell-permeable, readily 

de-esterified by intracellular esterases and rapidly increases intracellular GSH content 

(Wadey et al., 2009; Muyderman et al., 2007) We have previously demonstrated the 

beneficial effects of GSHe of increasing glutathione content in both in vitro and in vivo 

models (Muyderman et al., 2007; Muyderman et al., 2004). We have also shown that such 

treatment significantly improves cellular resistance against oxidative stress and that the 

depletion of this antioxidant directly correlates with increased susceptibility to oxidative 

damage. Moreover, pre-symptomatic administration of GSHe has recently proven somewhat 

beneficial in increasing lifespan in the SOD-1G93A, albeit demonstrating a very modest effect 

of approximately 10% (Winkler et al., 2014). However, in this study, GSHe was given as a 

daily intraperitoneal injection and GSH levels in spinal cord or brain were not determined 

making it highly plausible that the major increase in cellular GSH was contained to the 

abdominal cavity. Nevertheless it highlights the need for anti-oxidant treatment in ALS and 

indicates the central role of GSH in this process. Thus, the characterization of TDP-43-

mediated GSH depletion in our present study complements these data and has generated 

several unique insights into the properties of this key antioxidant in TDP-43 pathology. Most 

notably that mutant TDP-43 as well as silencing of endogenous TDP-43, depletes 

intracellular GSH and that its replacement provides overall cellular protection. In this context, 

a few previous studies also suggest that TDP-43 pathologies are associated with an imbalance 

in antioxidant redox buffering systems, with mitochondrial dysfunction most likely 

responsible for the increase in ROS production seen in GSH depleted cells (Caccamo et al., 

2013; Iguchi et al., 2012). In addition, alterations of cellular redox state may lead to 

decreased protein clearance (Niforou et al., 2014), indicating that modifications of cellular 
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functions by oxidative stress may result in protein aggregation as seen in TDP-43 pathology. 

This evidence is in line with our current results showing that restoring cellular GSH content 

prevents cytosolic redistribution and nuclear clearance of TDP-43. In support of this concept, 

ALS cases show proteasomal impairment associated with an increase in oxidative stress 

markers (Ilieva et al., 2007; Kim et al., 2009; Neutzner et al., 2012; Tashiro et al., 2012) and 

increased ROS production is intimately associated to impairment of the removal of 

ubiquitinated proteins (Cohen et al. 2012). Moreover, experimentally decreased GSH 

accelerates disease progression in the SOD1G93A transgenic (Vargas et al., 2011) and loss of 

total GSH content in motor neurons has been reported in cell lines carrying the same 

mutation (Rizzardini et al., 2003).Additionally, reduced levels of GSSG have been reported 

in cerebrospinal fluid from ALS patients (Tohgi et al., 1999) and we have recently shown a 

reduction in mitochondrial GSH in mSOD1G93A expressing NSC-34 cells (Muyderman et al., 

2009).  

In addressing the mechanisms underlying the reduction in cellular GSH, we observed a 

several-fold decrease in the regulatory subunit of the rate limiting enzyme responsible for 

GSH synthesis in cells expressing mutant TDP-43A315T. This result is most likely the major 

reason for the observed depletion of cellular GSH and increase in ROS content in these cells 

and is supported from previous studies in which genetic deletion of GCLM resulted in 

decreased GSH content and increased susceptibility to oxidative stress (Botta et al., 2008; 

Mohar et al., 2009).  

Finally we demonstrated that silencing of endogenous TDP-43 produced similar changes to 

those produced by the introduction of mutant TDP-43 in regard to GSH depletion and cellular 

ROS content. This finding implies additionally that TDP-43 pathology, at least to some 

extent, is mediated through a “loss of action” mechanism consistent with previous studies 

showing that transgenic mice with a partial loss of TDP-43 function show progressive 
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neurodegeneration with a phenotype similar to those of animal models of ALS (Yang et al., 

2014). In contrast to cells expressing mutant TDP-43, GSHe treatment did not salvage cells 

depleted of TDP-43. This is not surprising as a total loss of TDP-43 function would result in 

severe cellular dysfunction in which GSH depletion and ROS accumulation would constitute 

minor effects. However, the results highlight the role of TDP-43 in redox regulation and GSH 

synthesis.  

 

In summary, this study demonstrates that normal TDP-43 function may be regulated via 

redox mechanisms and that oxidative stress is central to TDP-43 proteinopathy, most likely 

dependent on impaired synthesis of GSH. We propose that a loss of TDP-43 function leads to 

the depletion of GSH and thereby further aggravates pathological cytosolic protein 

aggregation and impairment of cell function. Together, our data strongly indicate that 

treatments directly aimed at restoring intracellular GSH will attenuate formation of cytosolic 

TDP-43 aggregates and reduce MN death in TDP-43-mediated ALS. Thus, intra-CSF 

administration of such restorative agents would constitute a feasible approach to increase MN 

viability and slow disease progression if translated to human subjects.  
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Figure legends  

Fig. 1. Analyses of GSH (A) and oxidative stress (B) in motor neuronal NSC-34 cells. Values 

are mean ± S.D. (full details in Materials and methods). (A) Total, reduced and oxidized 

(GSSG) GSH expression in NSC-34 cells after treatment with; from left to right 70 µM EA 

for 5 hours, EA-treated cells treated with 5 mM GSHe, 1% ethanol (Eth vehicle) cells 

overexpressing the human wild-type TDP-43 (Wt), cells transfected with the TDP-43A315T 

mutation, cells transfected with the TDP-43A315T mutation and treated with 5 mM GSHe for 

72 h, cells transfected with a control plasmid encoding for the reporter gene mCherry only 

and non-treated cells (NT). *** p<0.001 ANOVA with SNK, n=5. (B) Cellular content of 

reactive oxygen species (ROS) in cells identically treated as in (A) with the addition of cells 

depleted of TDP-43 (miRNA) and the corresponding miRNA scrambled control 72 h post-

transfection. *** p< 0.001, ANOVA with SNK, n=5.  

Fig. 2. Confocal micrographs showing extra nuclear localization of TDP-43 and pTDP-43 

after 5 hours of EA treatment (70 µM EA) causing GSH depletion. Left: TDP-43 and pTDP-

43 immunoreactivity (green); Middle: Nuclear stain DAPI (blue); and Right: the 

superimposed picture. (A) Full length TDP-43 and pTDP-43 immunoreactivity (green) in 

untreated NSC-34 cells. (B) Full length TDP-43 expression in cells depleted of GSH after EA 

treatment (arrows indicate extra nuclear TDP-43 localization). (C) Expression of pTDP-43 in 

NSC-34 cells depleted of GSH after GSH depletion. Scale bars 25 µm. One out of 5 

representative experiments.   

 

Fig. 3. Cell viability in NSC-34 cells expressing TDP-43A315T, the mCherry control plasmid, 

miRNA or the miRNA scrambled control 24, 48 and 72 h after transfection and with or 

without GSHe treatment. GSHe treatment (5 mM) was initiated 3h post-transfection and this 

concentration was maintained throughout the experiment. Values are mean ± S.D. (full 
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details in Materials and methods). GSHe treatment significantly reduced cell death in cells 

expressing the A315T mutation (***p<0.001) but not in cells depleted of TDP-43 compared 

to the mCherry control and mutant cells treated with GSHe (### p<0.001compared to 

miRNA negative control). ANOVA with SNK, n=5. 

Fig. 4. Confocal micrographs showing the redistribution of TDP-43 (green) in motor 

neuronal NSC-34 cells expressing the A315T mutant. Nuclei were stained with DAPI and 

appear blue. Arrows indicate extra nuclear TDP-43 localization (n=5). (A). Cytosolic 

redistribution of TDP-43 (green) in cells transfected with TDP-43A315T (mCherry; red). (B) 

Cells expressing the reporter gene only (mCherry; red). (C) Normalization of TDP-43 

immunoreactivity (green) in cells transfected with the A315T mutation (red) and treated with 

5 mM GSHe (72h). Scale bars 25 µm. 

Fig. 5. Quantitative analyses of nuclear expression of TDP-43 compared to total nuclear 

protein as measured after cellular fractionation and quantitative Western immunoblotting 

(using Carestream image analysis from the total protein transferred to the blotting paper and 

imaged with Bio-Rad EZ Doc Gel Imager and used for normalisation, thus no reference 

protein needed).  Values are mean ± S.D.  (A) NSC-34 cells transfected with the TDP-43A315T 

mutation, cells expressing TDP-43A315T and treated with GSHe, and cells transfected with the 

reporter gene only (Cherry) or non-transfected cells (NT). Insert: Corresponding gel image. 

p19-22 refers to passage number of the NSC-34 cells. *** p<0.001, ANOVA with SNK 

posthoc test, n=6. (B) Typical Western blot demonstrating the purity of nuclear and cytosolic 

fractions using Histone 3 (H3) and GAPDH, respectively, as markers in untreated cells (left) 

and in cells expressing the TDP-43A315T mutant.  

Fig. 6. Effect of the TDP-43A315T mutation on key glycolytic enzyme GAPDH. Values are 

mean ± S.D. (full details in Materials and methods). GAPDH expression per mg total protein 
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in cells transfected with the TDP-43 mutation A315T, cells expressing mutant TDP-43 and 

treated with GSHe, cells transfected with the reporter gene only (Cherry) and in non-

transfected cells (NT). Insert: Corresponding gel image. p19-22 refers to passage number of 

the NSC-34 cells. *** p<0.001, ANOVA with SNK posthoc test, n=6. 

Fig. 7. Changes in expression of GCLM. Western immunoblotting of GCLM expression in 

cells transfected with the TDP-43A315T mutation compared to cells transfected with the 

control plasmid only. Values are mean ± S.D. (full details in Materials and methods). Insert: 

corresponding gel image. p19-22 refers to passage number of the NSC-34 cells. *** 

p<0.0001, Student t-test, n=6. 

Fig. 8. TDP-expression after silencing using miRNA constructs (508-511). Values are mean 

± S.D. (full details in Materials and methods). TDP-43 expression relative to protein content, 

*** p<0.001, ANOVA with SNK posthoc test, n=5. Insert: corresponding gel image. Results 

are typical for one out of five experiments.  

Fig. 9. GSH content and endogenous TDP-43 expression. Total cellular GSH content after 

miRNA-mediated silencing of TDP-43 expression. Values are mean ± S.D. (full details in 

Materials and methods).*** p<0.001, ANOVA with SNK posthoc test, n=3. 
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Highlights 

 

• MND causing mutations in the TDP-43 gene result in non-functioning glutathione producing 

enzymes 

• TDP-43/MND-causing mutations cause glutathione depletion 

• Preventing, or restoring, glutathione content prevent cell death in motor neuronal NSC-34 

cells expressing TDP-43 mutations causing motor neuron disease  

 

 




