10,459 research outputs found

    CAFE: Calar Alto Fiber-fed Echelle spectrograph

    Full text link
    We present here CAFE, the Calar Alto Fiber-fed Echelle spectrograph, a new instrument built at the Centro Astronomico Hispano Alem\'an (CAHA). CAFE is a single fiber, high-resolution (R∌R\sim70000) spectrograph, covering the wavelength range between 3650-9800\AA. It was built on the basis of the common design for Echelle spectrographs. Its main aim is to measure radial velocities of stellar objects up to V∌V\sim13-14 mag with a precision as good as a few tens of ms−1m s^{-1}. To achieve this goal the design was simplified at maximum, removing all possible movable components, the central wavelength is fixed, so the wavelentgth coverage; no filter wheel, one slit and so on, with a particular care taken in the thermal and mechanical stability. The instrument is fully operational and publically accessible at the 2.2m telescope of the Calar Alto Observatory. In this article we describe (i) the design, summarizing its manufacturing phase; (ii) characterize the main properties of the instrument; (iii) describe the reduction pipeline; and (iv) show the results from the first light and commissioning runs. The preliminar results indicate that the instrument fulfill the specifications and it can achieve the foreseen goals. In particular, they show that the instrument is more efficient than anticipated, reaching a S/N∌S/N\sim20 for a stellar object as faint as V∌V\sim14.5 mag in ∌\sim2700s integration time. The instrument is a wonderful machine for exoplanetary research (by studying large samples of possible systems cotaining massive planets), galactic dynamics (high precise radial velocities in moving groups or stellar associations) or astrochemistry.Comment: 12 pages, 23 figures; Acepted for publishing in A&A, 201

    Astrometric search for a planet around VB 10

    Full text link
    We observed VB 10 in August and September 2009 using the FORS2 camera of the VLT with the aim of measuring its astrometric motion and of probing the presence of the announced planet VB 10b. We used the published STEPS astrometric positions of VB 10 over a time-span of 9 years, which allowed us to compare the expected motion of VB 10 due to parallax and proper motion with the observed motion and to compute precise deviations. The achieved single-epoch precisions of our observations are about 0.1 mas and the data showed no significant residual trend, while the presence of the planet should have induced an apparent proper motion larger than 10 mas/yr. Subtraction of the predicted orbital motion from the observed data produces a large trend in position residuals of VB 10. We estimated the probability that this trend is caused by random noise. Taking all the uncertainties into account and using Monte-Carlo resampling of the data, we are able to reject the existence of VB 10b with the announced mass of 6.4 M_J with the false alarm probability of only 0.0005. A 3.2 M_J planet is also rejected with a false alarm probability of 0.023.Comment: 6 pages, 6 figures, 2 tables, accepted for publication in A&

    Determination of the critical current density in the d-wave superconductor YBCO under applied magnetic fields by nodal tunneling

    Full text link
    We have studied nodal tunneling into YBa2Cu3O7-x (YBCO) films under magnetic fields. The films' orientation was such that the CuO2 planes were perpendicular to the surface with the a and b axis at 450 form the normal. The magnetic field was applied parallel to the surface and perpendicular to the CuO2 planes. The Zero Bias Conductance Peak (ZBCP) characteristic of nodal tunneling splits under the effect of surface currents produced by the applied fields. Measuring this splitting under different field conditions, zero field cooled and field cooled, reveals that these currents have different origins. By comparing the field cooled ZBCP splitting to that taken in decreasing fields we deduce a value of the Bean critical current superfluid velocity, and calculate a Bean critical current density of up to 3*10^7 A/cm2 at low temperatures. This tunneling method for the determination of critical currents under magnetic fields has serious advantages over the conventional one, as it avoids having to make high current contacts to the sample.Comment: 8 pages, 2 figure

    A semi-analytical approach to perturbations in mutated hilltop inflation

    Full text link
    We study cosmological perturbations and observational aspects for mutated hilltop model of inflation. Employing mostly analytical treatment, we evaluate observable parameters during inflation as well as post-inflationary perturbations. This further leads to exploring observational aspects related to Cosmic Microwave Background (CMB) radiation. This semi-analytical treatment reduces complications related to numerical computation to some extent for studying the different phenomena related to CMB angular power spectrum for mutated hilltop inflation.Comment: 7 pages, 2 figures. Improved version to appear in IJMP

    The Adiabatic Instability on Cosmology's Dark Side

    Full text link
    We consider theories with a nontrivial coupling between the matter and dark energy sectors. We describe a small scale instability that can occur in such models when the coupling is strong compared to gravity, generalizing and correcting earlier treatments. The instability is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid. Our results are general, and applicable to a wide class of coupled models and provide a powerful, redshift-dependent tool, complementary to other constraints, with which to rule many of them out. A detailed analysis and applications to a range of models are presented in a longer companion paper.Comment: 4 pages, 1 figur

    Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier

    Full text link
    The magnetization behavior of mesoscopic superconducting disks can show hysteretic behavior which we explain by using the Ginzburg-Landau (GL) theory and properly taking into account the de-magnetization effects due to geometrical form factors. In large disks the Bean-Livingston surface barrier is responsible for the hysteresis. While in small disks a volume barrier is responsible for this hysteresis. It is shown that although the sample magnetization is diamagnetic (negative), the measured magnetization can be positive at certain fields as observed experimentally, which is a consequence of the de-magnetization effects and the experimental set up.Comment: Latex file, 4 ps file

    18 Sco: a solar twin rich in refractory and neutron-capture elements. Implications for chemical tagging

    Get PDF
    We study with unprecedented detail the chemical composition and stellar parameters of the solar twin 18 Sco in a strictly differential sense relative to the Sun. Our study is mainly based on high resolution (R ~ 110 000) high S/N (800-1000) VLT UVES spectra, which allow us to achieve a precision of about 0.005 dex in differential abundances. The effective temperature and surface gravity of 18 Sco are Teff = 5823+/-6 K and log g = 4.45+/-0.02 dex, i.e., 18 Sco is 46+/-6 K hotter than the Sun and log g is 0.01+/-0.02 dex higher. Its metallicity is [Fe/H] = 0.054+/-0.005 dex and its microturbulence velocity is +0.02+/-0.01 km/s higher than solar. Our precise stellar parameters and differential isochrone analysis show that 18 Sco has a mass of 1.04+/-0.02M_Sun and that it is ~1.6 Gyr younger than the Sun. We use precise HARPS radial velocities to search for planets, but none were detected. The chemical abundance pattern of 18 Sco displays a clear trend with condensation temperature, showing thus higher abundances of refractories in 18 Sco than in the Sun. Intriguingly, there are enhancements in the neutron-capture elements relative to the Sun. Despite the small element-to-element abundance differences among nearby n-capture elements (~0.02 dex), we successfully reproduce the r-process pattern in the solar system. This is independent evidence for the universality of the r-process. Our results have important implications for chemical tagging in our Galaxy and nucleosynthesis in general.Comment: ApJ, in pres

    Autonomous clustering using rough set theory

    Get PDF
    This paper proposes a clustering technique that minimises the need for subjective human intervention and is based on elements of rough set theory. The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency

    Duality Cascade in Brane Inflation

    Full text link
    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig

    Inter- and Intragranular Effects in Superconducting Compacted Platinum Powders

    Full text link
    Compacted platinum powders exhibit a sharp onset of diamagnetic screening at T≃1.9T \simeq 1.9 mK in zero magnetic field in all samples investigated. This sharp onset is interpreted in terms of the intragranular transition into the superconducting state. At lower temperatures, the magnetic ac susceptibility strongly depends on the ac field amplitude and reflects the small intergranular critical current density jcj_{c}. This critical current density shows a strong dependence on the packing fraction f of the granular samples. Surprisingly, jcj_{c} increases significantly with decreasing f (jc(B=0,T=0)≃0.07j_{c}(B=0, T=0) \simeq 0.07 A/cm2^{2} for f = 0.67 and jc(B=0,T=0)≃0.8j_{c}(B=0, T=0) \simeq 0.8 A/cm2^{2} for f = 0.50). The temperature dependence of jcj_{c} shows strong positive curvature over a wide temperature range for both samples. The phase diagrams of inter- and intragranular superconductivity for different samples indicate that the granular structure might play the key role for an understanding of the origin of superconductivity in the platinum compacts.Comment: 11 pages including 9 figures. To appear in Phys. Rev. B in Nov. 0
    • 

    corecore