11,968 research outputs found

    Deciphering the Atmospheric Composition of WASP-12b: A Comprehensive Analysis of its Dayside Emission

    Get PDF
    WASP-12b was the first planet reported to have a carbon-to-oxygen ratio (C/O) greater than one in its dayside atmosphere. However, recent work to further characterize its atmosphere and confirm its composition has led to incompatible measurements and divergent conclusions. Additionally, the recent discovery of stellar binary companions ~1" from WASP-12 further complicates the analyses and subsequent interpretations. We present a uniform analysis of all available Hubble and Spitzer Space Telescope secondary-eclipse data, including previously-unpublished Spitzer measurements at 3.6 and 4.5 microns. The primary controversy in the literature has centered on the value and interpretation of the eclipse depth at 4.5 microns. Our new measurements and analyses confirm the shallow eclipse depth in this channel, as first reported by Campo and collaborators and used by Madhusudhan and collaborators to infer a carbon-rich composition. To explain WASP-12b's observed dayside emission spectrum, we implemented several recent retrieval approaches. We find that when we exclude absorption due to C2H2 and HCN, which are not universally considered in the literature, our models require implausibly large atmospheric CO2 abundances, regardless of the C/O. By including C2H2 and HCN in our models, we find that a physically-plausible carbon-rich solution achieves the best fit to the available photometric and spectroscopic data. In comparison, the best-fit oxygen-rich models have abundances that are inconsistent with the chemical equilibrium expectations for hydrogen-dominated atmospheres and are 670 times less probable. Our best-fit solution is also 7.3*10^{6} times more probable than an isothermal blackbody model.Comment: 8 pages, 7 figures, accepted for publication in Ap

    Service-learning: Effectively Transitioning Students Into the Workplace

    Get PDF
    Service-learning is a method of learning that is meant to integrate the needs of the community with the academic curriculum of the students. This method allows for the work of the students, emerging professionals, to be used outside of the school, serving as a test of the skills that students may have only used in a school setting. Students are assigned the task of completing a project for a community organization who is without the resources to complete the project. Matching students who need experience with community organizations who are in need of professional services is an effective method of easing the student’s transition from a school setting into the workplace. Obtaining a job, even with a degree, is not a simple task. In order to obtain a job, you must have skills, proof of skills, and social connections. By providing students with an opportunity to do service-learning, they are able to improve all three of these requirements. My poster will share my experiences with service-learning. At EWU, I have worked with iFixit, a company that creates repair manuals, and with Teen & Kid Closet, a local organization that provides foster youth and youth experiencing homelessness with clothes. The projects completed for these two organizations have provided me with skills, proof of skills, and social connections helping me to comfortably transition into the workplace

    Shots, Everybody? : British Anti-smallpox Vaccination and the Development of Multifaceted Anti-vaccine Rhetoric on Internet Parenting Forums

    Get PDF
    Vaccination is an important public health measure that can help reduce disease at the population level. Substantial evidence exists that vaccines are safe and effective at reducing the incidence of diseases like pertussis, measles and cervical cancer. However, on Internet parenting forums, parents discuss whether or not vaccination is the right choice for their children. In this thesis, I highlight the historical context of the anti-vaccine movement in mid 19th century to early 20th century Victorian Britain in the era of compulsory smallpox vaccination. Vaccination in this time was a very different and more overtly dangerous process, and preexisting dissenting movements took up anti-vaccination as a cause. Today, the rhetoric on Internet parenting forums has grown to include arguments of safety, efficacy and necessity of vaccination. I gathered much of the information from the mothering.com and mumsnet.com parenting forums, and other websites like Sanevax.org

    Delayed Recombination and Cosmic Parameters

    Full text link
    Current cosmological constraints from Cosmic Microwave Background (CMB) anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from CMB data. We show that for recent observations of CMB anisotropy, from the Wilkinson Microwave Anisotropy Probe satellite mission 5-year survey (WMAP5) and from the ACBAR experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n_s, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z_*=1078\pm11, with uncertainties in the measurement weaker by one order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1-sigma to R=1.734\pm0.028. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.Comment: 9 pages, 9 figure

    New Analysis Indicates No Thermal Inversion in the Atmosphere of HD 209458b

    Full text link
    An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We re-examine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119 +/- 0.007%, 0.123 +/- 0.006%, 0.134 +/- 0.035%, and 0.215 +/- 0.008% in the 3.6, 4.5, 5.8, and 8.0 micron bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well-fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.Comment: 8 pages, 5 figures; accepted for publication in Ap

    Comparing key compositional indicators in Jupiter with those in extra-solar giant planets

    Get PDF
    Spectroscopic transiting observations of the atmospheres of hot Jupiters around other stars, first with Hubble Space Telescope and then Spitzer, opened the door to compositional studies of exoplanets. The James Webb Space Telescope will provide such a profound improvement in signal-to-noise ratio that it will enable detailed analysis of molecular abundances, including but not limited to determining abundances of all the major carbon- and oxygen-bearing species in hot Jupiter atmospheres. This will allow determination of the carbon-to-oxygen ratio, an essential number for planet formation models and a motivating goal of the Juno mission currently around JupiterComment: Submitted to the Astro2020 Decadal Survey as a white paper; thematic areas "Planetary Systems" and "Star and Planet Formation

    Volatiles in glasses from the HSDP2 drill core

    Get PDF
    H2O, CO2, S, Cl, and F concentrations are reported for 556 glasses from the submarine section of the 1999 phase of HSDP drilling in Hilo, Hawaii, providing a high-resolution record of magmatic volatiles over ~200 kyr of a Hawaiian volcano's lifetime. Glasses range from undegassed to having lost significant volatiles at near-atmospheric pressure. Nearly all hyaloclastite glasses are degassed, compatible with formation from subaerial lavas that fragmented on entering the ocean and were transported by gravity flows down the volcano flank. Most pillows are undegassed, indicating submarine eruption. The shallowest pillows and most massive lavas are degassed, suggesting formation by subaerial flows that penetrated the shoreline and flowed some distance under water. Some pillow rim glasses have H2O and S contents indicating degassing but elevated CO2 contents that correlate with depth in the core; these tend to be more fractionated and could have formed by mixing of degassed, fractionated magmas with undegassed magmas during magma chamber overturn or by resorption of rising CO2-rich bubbles by degassed magmas. Intrusive glasses are undegassed and have CO2 contents similar to adjacent pillows, indicating intrusion shallow in the volcanic edifice. Cl correlates weakly with H2O and S, suggesting loss during low-pressure degassing, although most samples appear contaminated by seawater-derived components. F behaves as an involatile incompatible element. Fractionation trends were modeled using MELTS. Degassed glasses require fractionation at pH2O β‰ˆ 5–10 bars. Undegassed low-SiO2 glasses require fractionation at pH2O β‰ˆ 50 bars. Undegassed and partially degassed high-SiO2 glasses can be modeled by coupled crystallization and degassing. Eruption depths of undegassed pillows can be calculated from their volatile contents assuming vapor saturation. The amount of subsidence can be determined from the difference between this depth and the sample's depth in the core. Assuming subsidence at 2.5 mm/y, the amount of subsidence suggests ages of ~500 ka for samples from the lower 750 m of the core, consistent with radiometric ages. H2O contents of undegassed low-SiO2 HSDP2 glasses are systematically higher than those of high-SiO2 glasses, and their H2O/K2O and H2O/Ce ratios are higher than typical tholeiitic pillow rim glasses from Hawaiian volcanoes

    Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the hot Jupiter WASP-4b

    Full text link
    We present the complete optical transmission spectrum of the hot Jupiter WASP-4b from 440-940 nm at R ~ 400-1500 obtained with the Gemini Multi-Object Spectrometers (GMOS); this is the first result from a comparative exoplanetology survey program of close-in gas giants conducted with GMOS. WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in transmission due to a large scale height (370 km). We derive the transmission spectrum of WASP-4b using 4 transits observed with the MOS technique. We demonstrate repeatable results across multiple epochs with GMOS, and derive a combined transmission spectrum at a precision about twice above photon noise, which is roughly equal to to one atmospheric scale height. The transmission spectrum is well fitted with a uniform opacity as a function of wavelength. The uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest that the atmosphere is dominated by clouds with condensate grain size of ~1 um. This result is consistent with previous observations of hot Jupiters since clouds have been seen in planets with similar equilibrium temperatures to WASP-4b. We describe a custom pipeline that we have written to reduce GMOS time-series data of exoplanet transits, and present a thorough analysis of the dominant noise sources in GMOS, which primarily consist of wavelength- and time- dependent displacements of the spectra on the detector, mainly due to a lack of atmospheric dispersion correction.Comment: 23 pages, 12 figures, accepted for publication in AJ, 2017 July
    • …
    corecore