69 research outputs found

    New constraints on the postglacial shallow-water carbonate accumulation in the Great Barrier Reef

    Get PDF
    More accurate global volumetric estimations of shallow-water reef deposits are needed to better inform climate and carbon cycle models. Using recently acquired datasets and International Ocean Discovery Program (IODP) Expedition 325 cores, we calculated shallow-water CaCO3 volumetrics and mass for the Great Barrier Reef region and extrapolated these results globally. In our estimates, we include deposits that have been neglected in global carbonate budgets: Holocene Halimeda bioherms located on the shelf, and postglacial pre-Holocene (now) drowned coral reefs located on the shelf edge. Our results show that in the Great Barrier Reef alone, these drowned reef deposits represent ca. 135 Gt CaCO3, comparatively representing 16-20% of the younger Holocene reef deposits. Globally, under plausible assumptions, we estimate the presence of ca. 8100 Gt CaCO3 of Holocene reef deposits, ca. 1500 Gt CaCO3 of drowned reef deposits and ca. 590 Gt CaCO3 of Halimeda shelf bioherms. Significantly, we found that in our scenarios the periods of pronounced reefal mass accumulation broadly encompass the occurrence of the Younger Dryas and periods of CO2 surge (14.9-14.4 ka, 13.0-11.5 ka) observed in Antarctic ice cores. Our estimations are consistent with reef accretion episodes inferred from previous global carbon cycle models and with the chronology from reef cores from the shelf edge of the Great Barrier Reef

    Spatio-temporal patterns in the postglacial flooding of the Great Barrier Reef shelf, Australia

    Get PDF
    The shelf of the Great Barrier Reef (GBR) was progressively marine flooded from the last glaciation maximum (LGM) (ca 20 ka BP) until the last sea-level highstand (ca 6 ka BP), affecting the depositional evolution of the GBR margin and associated deposits. However, the physiographic variables related to this process have not been fully characterized, especially in relation to the sedimentary processes at the shelf margin. For this study, we used a bathymetric model of the entire shelf and a shelf margin sub-set, divided into 33 latitudinal zones. Postglacial marine flooding was simulated and flooded area (km2), flooding magnitude (km2 per sea-level increment), flooding rate (km2. ky−1) and coastline length (km) were estimated for each zone, from 130 m to 0 m below present sea level, representing the period from 20 ka to 6 ka BP. Our results show that the postglacial marine flooding did not occur uniformly and that some sub-regions (e.g. the southern-central GBR) had early and rapid flooding. Coastal complexity increased in the mid-postglacial, reaching maximum values at around 9 ka BP. This reflects a coastal landscape evolving from a linear, laterally connected coast to a complex coast dominated by estuaries and lagoons, partly returning to its initial linearity during highstand. Flooding trends and geological evidence make two depositional relationships apparent. Firstly, the timing and magnitude of the off-shelf sediment flux appears linked to the presence and orientation of a shelf-edge rim, and to the extension and morphology of the evolving drainage network. Secondly, the periods of shelf-edge reef development and demise seem to respond to the remobilisation, trapping or redirection of fine sediments. We propose a sedimentation model for the shelf margin and the slope driven by the interplay of sea-level rise and shelf physiography, and we highlight two fundamental processes: (1) the cross-shelf sediment transport related to coastline retreat under rising sea levels, and (2) the effectiveness of transient embayments in redirecting or trapping sediments. The quantifications provided in this study have implications in the estimation of Pleistocene carbonate budgets and the atmospheric carbon cycle, as well as for past human migrations

    Between the tides: modelling the elevation of Australia’s exposed intertidal zone at continental scale

    Get PDF
    The intertidal zone represents a critical transition between marine and terrestrial ecosystems, supporting a complex mosaic of highly productive and biologically diverse habitats. However, our understanding of these important coastal environments is limited by a lack of spatially consistent topographic data, which can be extremely challenging and costly to obtain at continental-scale. Satellite remote sensing represents an important resource for monitoring extensive coastal zones. Previous approaches to modelling the elevation of the intertidal zone using earth observation (EO) data have been restricted to small study regions or have relied on manual image interpretation, thus limiting their ability to be applied consistently over large geographic extents. In this study, we present an automated open-source approach to generate satellite-derived elevation data for over 15,387 km2 of intertidal terrain across the entire Australian coastline. Our approach combines global tidal modelling with a 30-year time series archive of spatially and spectrally calibrated Landsat satellite data managed within the Digital Earth Australia (DEA) platform. The resulting National Intertidal Digital Elevation Model (NIDEM) dataset provides an unprecedented three-dimensional representation of Australia's vast exposed intertidal zone at 25 m spatial resolution. We validate our model against LiDAR, RTK GPS and multibeam bathymetry datasets, finding that modelled elevations are highly accurate across sandy beach (±0.41 m RMSE) and tidal flat environments (±0.39 m RMSE). Model performance was least accurate (±2.98 m RMSE) within rocky shores and reefs and other complex coastal environments with extreme and variable tidal regimes. We discuss key challenges associated with modelling intertidal elevation including tidal model performance and biased observations from sun-synchronous satellites, and suggest future directions to improve the accuracy and utility of continental-scale intertidal elevation modelling. Our model can be applied to tidally-influenced coastal environments globally, addressing a key gap between the availability of sub-tidal bathymetry and terrestrial elevation data

    Morphometric analysis of the submarine landslides in the central Great Barrier Reef margin, north-eastern Australia

    Get PDF
    The morphometric characterization of the submarine landslides on a mixed siliciclastic-carbonate margin, the Great Barrier Reef (NE Australia), is presented in this study. The landslides cover about the 27% of the slope in the study region, removing in some examples up to 33 km 3 of sediment. Spearman rank correlation coefficients show meaningful correlations among landslide size parameters. However, there is no relationship between the unfailed slope in the source area and the size of the landslide. The mobility of the landslides is within the normal range observed in other submarine landslides worldwide. The results of this study represent a preliminary step to understand the sedimentary processes, preconditioning factors and triggering mechanisms for submarine landslide generation in mixed marginse presentan los resultados de la caracterización morfométrica de los deslizamientos submarinos en un margen continental mixto siliciclástico-carbonatado, el margen de la Gran Barrera de Arrecifes (NE Australia). Los deslizamientos abarcan aproximadamente el 27% de la superficie del talud en la zona de estudio, removilizando en algunos casos volúmenes de sedimento de hasta 33 km3. El análisis de correlación de Spearman indica que existe buena correlación entre los parámetros relacionados con las dimensiones del deslizamiento. Sin embargo, no se observa relación directa entre la pendiente del talud y las dimensiones de los deslizamientos. La movilidad de los deslizamientos se encuentra dentro del rango observado en otros deslizamientos submarinos. Los resultados de este trabajo constituyen un primer paso para entender los procesos sedimentarios y mecanismos de generación de deslizamientos en los márgenes de tipo mixt

    Submarine landslide morphometrics and slope failure dynamics along a mixed carbonate-siliciclastic margin, north-eastern Australia

    Get PDF
    Comparatively little work has been carried out on the morphology and distribution of submarine landslides on mixed carbonate-siliciclastic margins. The morphometric analysis of 84 open slope submarine landslides on the Great Barrier Reef (GBR) margin of north-eastern Australia provides useful insights into slope failure dynamics and frequency distribution of landslides on mixed margins. Our analysis has revealed that the slope area affected by failures (12.6% of the margin) is similar to siliciclastic-dominated passive margins, although the total volume of remobilized sediment (73 km3) is comparatively small. Landslide scars lie at shallower depths to the south of the margin (mean of 576 m vs 1517 m to the north) and there is good correlation between the depth at origin and depth at termination for the GBR landslides. The cumulative frequency distribution of volume, area and total length of the GBR landslides does not fit to common distributions (e.g., power law, logarithmic or exponential) for the entire dataset. Still, the cumulative frequency distribution of landslide dimensions can be statistically explained either by a power law similar to other passive margins, or by a lognormal distribution similar to some siliciclastic margins. Morphometric characteristics, such as the volume of sediment released per unit width and the probability function of volume distribution suggest that slope failures mainly involved relatively unconsolidated sediments. We find that the disintegration by debris flows was the dominant process along the entire GBR margin and that their spreading efficiency and mobility was relatively low. Margin stratigraphy, fluid overpressure at the base of the slope, and detachment surfaces at the boundary between different lithologies that separate sedimentary cycles may have preconditioned the slope to fail. This compilation provides a robust morphometric framework that allows comparison with existing and future slope failure databases, and lays the foundation for performing numerical simulations to assess the landslide-generated tsunamigenic hazards along the GBR margin

    Spatial patterns in the distribution of benthic assemblages across a large depth gradient in the Coral Sea, Australia

    Get PDF
    The Queensland Plateau in the Coral Sea off north-eastern Australia supports numerous submerged and emergent reefs. Osprey Reef is an emergent reef at the northern tip of the plateau ~1500 m in elevation. Over such a large depth gradient, a wide range of abiotic factors (e.g. light, temperature, substratum etc.) are likely to influence benthic zonation. Despite the importance of understanding the biodiversity of Australia's Coral Sea, there is a lack of biological information on deep-water habitats below diving depths. Here we used a deep-water ROV transect to capture video, still photos and live samples over a depth range spanning 92 to 787 m at North Horn on Osprey Reef. Video analysis, combined with bathymetry data, was used to identify the zones of geomorphology and the benthic assemblages along the depth gradient. There were marked changes in the geomorphology and the substrate along this depth gradient which likely influence the associated benthos. Cluster analysis indicated five benthic assemblage groups, which showed clear zonation patterns and were generally predictable based on the depth and sedimentary environment. These results are the first quantitative observations to such depths and confirm that the waters of the Coral Sea support diverse benthic assemblages, ranging from shallow-water coral reefs to mesophotic coral ecosystems, to deep-water azooxanthellate corals and sponge gardens. The knowledge provided by our study can inform management plans for the Coral Sea Commonwealth Marine Reserve that incorporate the deeper reef habitats and help to minimise future damage to these marine ecosystems

    Palaeogeography and voyage modeling indicates early human colonization of Australia was likely from Timor-Roti

    Get PDF
    Anatomically Modern Humans (AMHs) dispersed rapidly through island southeast Asia (Sunda and Wallacea) and into Sahul (Australia, New Guinea and the Aru Islands), before 50,000 years ago. Multiple routes have been proposed for this dispersal and all involve at least one multi-day maritime voyage approaching 100 km. Here we use new regional-scale bathymetry data, palaeoenvironmental reconstruction, an assessment of vertical land movements and drift modeling to assess the potential for an initial entry into northwest Australia from southern Wallacea (Timor-Roti). From ∼70,000 until ∼10,000 years ago, a chain of habitable, resource-rich islands were emergent off the coast of northwest Australia (now mostly submerged). These were visible from high points close to the coast on Timor-Roti and as close as 87 km. Drift models suggest the probability of accidental arrival on these islands from Timor-Roti was low at any time. However, purposeful voyages in the summer monsoon season were very likely to be successful over 4–7 days. Genomic data suggests the colonizing population size was >72–100 individuals, thereby indicating deliberate colonization. This is arguably the most dramatic early demonstration of the advanced cognitive abilities and technological capabilities of AMHs, but one that could leave little material imprint in the archaeological record beyond the evidence that colonization occurred

    Deep-reef fish communities of the Great Barrier Reef shelf-break: trophic structure and habitat associations

    Get PDF
    The ecology of habitats along the Great Barrier Reef (GBR) shelf-break has rarely been investigated. Thus, there is little understanding of how associated fishes interact with deeper environments. We examined relationships between deep-reef fish communities and benthic habitat structure. We sampled 48 sites over a large depth gradient (54–260 m) in the central GBR using Baited Remote Underwater Video Stations and multibeam sonar. Fish community composition differed both among multiple shelf-break reefs and habitats within reefs. Epibenthic cover decreased with depth. Deep epibenthic cover included sponges, corals, and macro-algae, with macro-algae present to 194 m. Structural complexity decreased with depth, with more calcified reef, boulders, and bedrock in shallower depths. Deeper sites were flatter and more homogeneous with softer substratum. Habitats were variable within depth strata and were reflected in different fish assemblages among sites and among locations. Overall, fish trophic groups changed with depth and included generalist and benthic carnivores, piscivores, and planktivores while herbivores were rare below 50 m. While depth influenced where trophic groups occurred, site orientation and habitat morphology determined the composition of trophic groups within depths. Future conservation strategies will need to consider the vulnerability of taxa with narrow distributions and habitat requirements in unique shelf-break environments

    Benthic communities of the lower mesophotic zone on One Tree shelf edge, southern Great Barrier Reef, Australia

    Get PDF
    Context: Increasing interest in mesophotic coral ecosystems has shown that reefs in deep water show considerable geomorphic and ecological variability among geographic regions. Aims: We provide the first investigation of mesophotic reefs at the southern extremity of the Great Barrier Reef (GBR) to understand the biotic gradients and habitat niches in the lower mesophotic zone. Methods: Multibeam data were used to target five benthic imagery transects collected in the lower mesophotic (80–130 m) zone from the shelf edge near One Tree Island (23°S, 152°E) by using a single HD-SDI subsea camera. Key results: Transects supported similar benthic communities in depths of 80–110 m, with the abundance of sessile benthos declining below ~110 m where the shelf break grades into the upper continental slope. Conclusions: The effect of the Capricorn Eddy may be promoting homogeneity of benthic assemblages, because it provides similar environmental conditions and potential for connectivity. Variation in benthic communities between hard and soft substrate and differing topographic relief within the study site are likely to be influenced by variation in sedimentation, including sensitivity to suspended particles. Implications: This study highlighted that the lower mesophotic region on the One Tree shelf edge supports mesophotic coral ecosystems that vary depending on depth and substrate

    Gloria Knolls Slide: a prominent submarine landslide complex on the Great Barrier Reef margin of north-eastern Australia

    Get PDF
    We investigate the Gloria Knolls Slide (GKS) complex on the Great Barrier Reef margin of north-eastern Australia, the largest extant mixed carbonate-siliciclastic province in the world. Based on the most complete bathymetric and sub-bottom profile datasets available for the region, we describe the main surface and subsurface geomorphologic characteristics of this landslide complex. The GKS forms a 20 km along-slope and 8 km across-slope indentation in the margin, extending from 250 to 1350 m depth, and involves a volume of 32 km3 of sediment remobilized during three events. Three main seafloor terrains can be distinguished based on seafloor morphology: a source area, a proximal depositional area and a distal depositional area. The source area includes a main headwall scarp with a maximum height of 830 m and a secondary scarp at 670 m depth. The proximal depositional area is flat and smooth, and lacks debris exposed on the seafloor. The distal depositional area has a hummocky surface showing a distinctive cluster of eight knolls and over 70 small debris blocks. A dredge sample from the top of the largest knoll at a depth of 1170 m reveals the presence of a cold-water coral community. In the sub-bottom profiles, the mass-transport deposits in the GKS are identified below the background sediment drape as partially confined, wedge-shaped bodies of mostly weak amplitude, transparent reflectors in the proximal depositional area; and more discontinuous and chaotic in the distal depositional area. The failed sediment slabs of the GKS were evacuated, transported and disintegrated downslope in three events following a sequential failure process spreading successively from the lower slope to the upper slope. The first event initiated at the lower slope at the depth of the secondary scarp, moved downslope and disintegrated over the basin floor leaving coherent blocks. The subsequent second and third events were responsible for the formation upslope of the main scarp in the GKS. The timing of emplacement of the first GKS event, constrained by radiometric age of fossil biota from the surface of the largest slide block, was at least before 302 ± 19 ka. The presence of alternating mixed carbonate and siliciclastic lithologies that build the slope might have played an important role as a preconditioning factor in this region. Preliminary estimations suggest that unusually large seismic events were the most likely triggering mechanism for the GKS. This work contributes to the understanding of large mass-movement deposits in mixed carbonate-siliciclastic margins and provides a useful morphologic characterization and evolutionary model for assessing its tsunamigenic potential with further numerical simulations. In addition, the discovery of a cold-water coral community on top of the largest knoll has implications for identifying similar landslide-origin cold-water coral communities on the GBR margin. © 2016 Elsevier B.V
    corecore