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 40 

Abstract 41 

The Queensland Plateau in the Coral Sea off north-eastern Australia supports numerous submerged and 42 

emergent reefs. Osprey Reef is an emergent reef at the northern tip of the plateau ~1500 m in elevation. 43 

Over such a large depth gradient, a wide range of abiotic factors (e.g. light, temperature, substratum etc.) 44 

are likely to influence benthic zonation. Despite the importance of understanding the biodiversity of 45 

Australia’s Coral Sea, there is a lack of biological information on deep-water habitats below diving 46 

depths. Here we used a deep-water ROV transect to capture video, still photos and live samples over a 47 

depth range spanning 92 to 787 m at North Horn on Osprey Reef. Video analysis, combined with 48 

bathymetry data, was used to identify the zones of geomorphology and the benthic assemblages along the 49 

depth gradient. There were marked changes in the geomorphology and the substrate along this depth 50 

gradient which likely influence the associated benthos. Cluster analysis indicated five benthic assemblage 51 

groups, which showed clear zonation patterns and were generally predictable based on the depth and 52 

sedimentary environment. These results are the first quantitative observations to such depths and confirm 53 

that the waters of the Coral Sea support diverse benthic assemblages, ranging from shallow-water coral 54 

reefs to mesophotic coral ecosystems, to deep-water azooxanthellate corals and sponge gardens. The 55 

knowledge provided by our study can inform management plans for the Coral Sea Commonwealth 56 

Marine Reserve that incorporate the deeper reef habitats and help to minimise future damage to these 57 

marine ecosystems. 58 

Keywords 59 

Osprey Reef; benthic; zonation; geomorphology; mesophotic; coldwater coral; sponges 60 
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Introduction 61 

The Coral Sea region off north-eastern Australia contains numerous pinnacles and modern reef complexes 62 

that have formed on rifted continental blocks within the Queensland Plateau, the largest marginal plateau 63 

on the Australian continental margin (Davies et al. 1989). Approximately the same size as the Bahama 64 

Platform, this large (~165,000 km2) submerged carbonate platform formed when the Coral Sea Basin 65 

opened in the Palaeocene about 60 Ma splitting off fragments of continental lithosphere (Mutter and 66 

Karner 1980; Symonds et al. 1983). Subsidence and drowning commencing in the Middle to Late Eocene 67 

(42-37.5 Ma) led to its present median depth of about ~1100 m. The Queensland Plateau now supports 68 

~30 emergent and submerged reefs growing on the corners of these basement high points, some with 69 

elevations over 1000 m above the surrounding plateau and basins. The emergent reefs include large banks 70 

(over 100 km long) and smaller reefs and pinnacles (several km to 100 m wide), with living reef systems 71 

occupying almost 15 percent of the surface of the Queensland Plateau. 72 

 73 

Coral reef development on the Queensland Plateau commenced growing when the Australian plate moved 74 

into the tropics in the Early Miocene (22 Ma; Davies et al. 1988). In contrast, the major reef growth on 75 

the neighbouring Great Barrier Reef (~100 km to the west) commenced much later, between 452 and 365 76 

ka (Webster and Davies 2003) and has been continually disrupted by the cyclic falling and rising of 77 

eustatic sea-levels. Indeed, reef growth on the Queensland Plateau continued even during the Late 78 

Miocene and Pleistocene lowstand sea-levels (120-200 m below present) when only the upper parts of the 79 

coral reefs on the plateau were most likely exposed (Davies et al. 1989). The emergent reefs of the 80 

Queensland Plateau were likely to be important refuges for coral reef taxa during these lower sea-levels, 81 

and may also have provided the Great Barrier Reef with a source of propagules after catastrophic events, 82 

a hypothesis recently supported by genetic data (Wörheide et al. 2002; van Oppen et al. 2011). Hence 83 

these reefs, some of the largest in the world, should be afforded greater research attention. 84 

 85 

In 2012, the Australian Government proclaimed nearly 1 million square kilometres in the Coral Sea as a 86 

marine reserve. The Coral Sea Commonwealth Marine Reserve extends over the Queensland Plateau, and 87 

includes the large Diamond Islets, Diane Bank, Lihou, Flinders, Coringa-Herald, Holmes, Bougainville, 88 

Shark and Osprey reefs. Australia’s marine reserves, including the Coral Sea Commonwealth  Marine 89 

Reserve, are currently under review and require information on key ecological features and their 90 
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conservation values. However, the remote location of the Coral Sea has resulted in a paucity of scientific 91 

data on the deeper environments of this region (Ceccarelli et al. 2013). The majority of research that has 92 

been conducted on benthic ecosystems in Australia’s Coral Sea has focussed on the shallow-water coral 93 

reefs, generally in water depths of less than 20 m (Ceccarelli et al. 2013). More recent observations of the 94 

mesophotic (30-150 m), disphotic (some light but not enough to sustain photosynthesis ~150 to 250 m) 95 

and aphotic (no light and deeper than ~250 m) zones in the Coral Sea have indicated that these waters 96 

also support diverse benthic communities (Bongaerts et al. 2011; Wörheide et al. 2011; Wörheide et al. 97 

2012). These include a ‘relict' fauna of brachiopods (Lüter et al. 2003), coralline sponges (Wörheide 98 

2008; Karlińska-Batres and Wörheide 2013) and Hexactinellida (Dohrmann et al. 2011) discovered at 99 

Osprey Reef. 100 

 101 

Marine benthic communities commonly exhibit clear zonation along depth gradients from surface waters 102 

to the deep-sea, attributed to various factors including substratum type, temperature, pressure, water 103 

chemistry, food and energy availability (Grassle et al. 1979; Cartes and Carrasson 2004; Carney 2005). 104 

The emergent reefs of the Queensland Plateau therefore provide a habitat for benthic communities 105 

spanning depths ranging from the sea surface to greater than 1000 m. Their steep flanks are likely to 106 

support a diverse range of benthic communities, including shallow-water coral reefs, mesophotic coral 107 

ecosystems (MCEs), and deep-water azooxanthellate corals and sponge gardens. Therefore, the flanks of 108 

a Coral Sea reef could be expected to exhibit zonation in benthic assemblages when descending from the 109 

shallow sunlit surface waters, through the twilight mesopelagic and disphotic zones, then into the deeper 110 

and cooler aphotic waters. However, no studies have quantitatively examined the composition and 111 

zonation of benthic communities on Australia’s Coral Sea reefs beyond diving depths. 112 

 113 

In 2009, the Deep Down Under expedition (www.deepdownunder.de) to Australia's Coral Sea area 114 

targeted Osprey Reef, which is situated at the northern tip of the Queensland Plateau (Fig. 1). The reef is 115 

separated by about 125 km from the north-eastern Australia margin by the Queensland Trough and is 116 

surrounded by clear, oceanic waters unaffected by continental sedimentation. Osprey Reef is steep-sided, 117 

rising ~1500 m above the surrounding seafloor of the Queensland Plateau to the south-east and about 118 

2500 m above the deeper Queensland Trough and Osprey Embayment to the north-west of the reef. The 119 

shallow reef platform is 28 km long by 10 km wide, with a lagoon about 40 m deep enclosed by a near-120 
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continuous rim rising to the sea surface. North-west Osprey Reef forms a distinct point known as ‘North 121 

Horn’, which was chosen as the location of the present remotely operated underwater vehicle (ROV) 122 

study (Fig. 2). 123 

 124 

The surface water circulation in this region is dominated by the East Australian Current (EAC) which 125 

forms on the Queensland Plateau from the South Equatorial Current (SEC; Church 1987). Around latitude 126 

15° S, the EAC flows southward following the Great Barrier Reef shelf. Part of the SEC forms a 127 

clockwise gyre called the Coral Sea Counter Current or Hiri Gyre which flows northward past Osprey 128 

Reef and into the Gulf of Papua (Wolanski et al. 1995). Below these tropical surface waters are cooler 129 

water mass properties indicative of Subantarctic Mode Water at a depth of about 600 m (SAMW; 130 

Solokov and Rintoul 2000; Hartin et al. 2011) and of Antarctic Intermediate Water (AAIW; Solokov and 131 

Rintoul 2000; Hartin et al. 2011) below 700 to 1000 m. SAMW and AAIW enter the Queensland Trough 132 

from the south and flow northwards towards the Coral Sea Basin (Solokov and Rintoul 2000). The area is 133 

also impacted by tropical cyclones with recent cyclones passing over Osprey Reef in May 2013 and 134 

March 2015.  135 

 136 

In this study, we have used a high-resolution digital elevation model (DEM), and the video and still 137 

imagery collected by a deep-water Cherokee ROV, to identify the spatial patterns in geomorphology and 138 

benthic assemblages found along a depth gradient spanning 787 m at Osprey Reef in the Coral Sea. We 139 

show that Osprey Reef supports diverse benthic assemblages, and identify defined geomorphic zones 140 

characterised by distinct benthic assemblage groups that were generally predictable based on the depth 141 

and sedimentary environment. 142 

 143 

Methods 144 

Bathymetry data 145 

Bathymetry data around North Horn were collected between 2006-2008 by the MV Undersea Explorer 146 

using a Raymarine DSM300 singlebeam echosounder (dual 50/200 kHz) rated to about 1000 m depth. 147 

Raw bathymetry and position data were imported to Caris HIPS/SIPS post-processing software, then 148 

predicted tides and a modelled sound velocity were applied and edited to remove noise. The final xyz data 149 

were imported to ESRI ArcGIS and combined with Royal Australian Navy airborne lidar bathymetry data 150 
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from the reef flat and lagoon at Osprey Reef. The ArcGIS application Topogrid was used to generate a 151 

0.0001-arcdegree (~10 m) resolution ESRI grid for north-western Osprey Reef. The ESRI grid data were 152 

also imported to QPS Fledermaus software for 3D visualisation. 153 

 154 

ROV survey 155 

ROV data were collected using the 34 m utility vessel MV PMG Pride during the Deep Down Under 156 

expedition to the Queensland Plateau (www.deepdownunder.de). Imagery and specimens from benthic 157 

ecosystems were collected using the Marum (www.marum.de) Cherokee ROV depth rated to 1000 m 158 

with a weight of 450 kg and dimensions of 1.4 x 0.88 x 0.8 m. Propulsion uses 4 axial thrusters with a 159 

vertical thrust of 45 kgf or a velocity of ~0.3 ms-1. A surface-controlled manipulator arm can collect 160 

samples up to 7 kg. Optical devices include a Tritech Typhoon colour zoom videocamera (720 x 576 161 

pixels), Kongsberg OE14 digital still camera (5 megapixel), a three red laser array (30 x 23 cm) and a 230 162 

W spotlight. An IXSEA GAPS system provided USBL, INS and GPS absolute positioning of the ROV, 163 

as well as the surface position of the vessel. 164 

 165 

The ROV dive at North Horn was conducted from 11-12 December 2009 UTC over a period of 5 h 42 166 

min, from the depths 787 to 92 m. Video data were streamed to the surface for recording as mpeg files on 167 

MiniDV VCRs, together with the timestamp, position and depth overlays. This resulted in six mpeg files 168 

each about one hour long. The still images were recorded internally on the ROV, timestamped and 169 

downloaded to CD on recovery of the ROV. The ROV position and depth sensor data and timestamps 170 

were recorded into CSV files at 5 s interval. 171 

 172 

Data analysis 173 

The ROV navigation data for Longitude, Latitude, Depth, Year, Month, Day, Hour, Min, Sec were 174 

recorded continuously to an Excel spreadsheet for the video data. These records were parsed to show only 175 

whole-minute positions, resulting in the availability of 343 x one-min records. A Cherry SPOS keyboard 176 

(Model G86-63400) provided up to 144 keys programmed using a classification scheme of physical and 177 

biological parameters to append a Characterization sample to the spreadsheet (Table 1). This 178 

characterization method is similar to the underwater video analysis conducted by Anderson et al. (2007) 179 

and Post et al. (2011) for analysis of benthic survey data collected in other regions. The classification 180 
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scheme in Table 1 is for generic use in the deep-sea with the main headings of: Primary substrate (>50%), 181 

Secondary substrate (>25%), Features, Relief, Bedforms, Biological cover, Lebensspuren, Biota and 182 

Additional. Lebensspuren refers to the ‘life traces’ from bioturbating animals (Przeslawski et al. 2012). 183 

 184 

The video files were viewed for a 15 second period at each whole minute, then classified using the 185 

parameters in Table 1. For every one-min sample, both the Primary and Secondary substrate were 186 

recorded into an Excel spreadsheet, in addition to the Relief type, Biological cover and any biota 187 

observed. Biological cover was a qualitative measure: barren has no biota observed; low 10%; medium 188 

10-50%; and high >50%. The keyboard provided a relatively quick method of recording the classification 189 

by adding an abbreviation code into the Characterization cell for each one-min sample. The higher-190 

resolution still images provided assistance to classify the physical environment and biota where the video 191 

data were unclear. The physical specimens collected by the ROV and now archived at the Queensland 192 

Museum in Brisbane, Australia, provided additional confirmation of the taxon classifications. 193 

 194 

Video data were converted to a presence/absence matrix using a Python program script, with each cell 195 

assigned either 1 or 0 under the column headings representing every classification type shown in Table 1. 196 

This presence/absence matrix was imported into a point shapefile for visualisation in ArcMap 10.1 to 197 

show the positions and observed parameters of each one-min sample (Excel spreadsheet of the data 198 

matrix is given in Online Resource 1). 199 

 200 

Cluster analysis 201 

Patterns in the distribution of the benthic biota data were examined using multivariate techniques in 202 

Primer v6 (Clarke and Gorley 2006). The cluster analysis data excluded the demersal fish, pelagic shark 203 

and the biological cover variables. The Primary substrate and Relief types were added as factors for each 204 

1-min sample in the Primer worksheet. The presence-absence data were converted to a Bray-Curtis 205 

similarity resemblance matrix to quantify the similarity among samples. The resemblance matrix was 206 

analysed using group-averaged cluster analysis and the Bray-Curtis similarity displayed as a Principal 207 

Coordinates (PCO) plot, with symbols visualised as five groups using Bray-Curtis similarity clustered at 208 

45% similarity. SIMPER analysis was conducted to identify the main contributing taxa for each benthic 209 

assemblage group, shown in Table 2. Additionally, an abiotic matrix was created using the Primary 210 
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substrate and Relief records, together with depths binned as arbitrarily coded depth ranges of 150 m (e.g. 211 

<150, 150-300, 300-450, 450-600, 600-750 and >750 m). With a total ROV sample range of 695 m, from 212 

the deepest record at 787 m to end of the dive in 92 m, the 150 m bins were considered an optimal bin 213 

size for abiotic analysis. The variables (Substrate, Relief and Depth) were initially ranked, and then biota 214 

and abiotic matching conducted using BIOENV analysis with Euclidean Distance against the biota 215 

resemblance matrix. 216 

 217 

Results 218 

Geomorphology 219 

The bathymetry mapping resulted in a 10 m-resolution grid with dimensions of about 13.8 km in the 220 

north-south direction, 9.7 km in the east-west direction, with a 3D surface area of 117.0 km2 and depths to 221 

932 m (Fig. 2). North Horn is the name of the prominent reef flat at the northern tip of Osprey Reef, up to 222 

3 km wide at its greatest extent, which thins to about 700 m towards The Entrance, a narrow cleft through 223 

the reef flat into the extensive lagoon behind. The ROV transect followed a gently curving line from a 224 

depth of 787 m up towards North Horn. The geomorphology below North Horn shows the reef wall to a 225 

depth of 30 m, dropping steeply with the slope gradient increasing from 20° to 50° with depth (Fig. 3a 226 

and b). Then a precipitous cliff, with a gradient of 60° to 70°, occurs from 30 to 130 m depth. This near-227 

vertical cliff is pockmarked with caves and overhangs between 110 and 130 m. Calcareous sand streams 228 

downward through narrow clefts and between rock protrusions, draping over surfaces with a suitably 229 

gentle gradient. 230 

 231 

From 130 m to between about 250 to 300 m, the slope eases to a generally consistent 30° to 40° gradient, 232 

ending at a narrow (~50 m wide) shoulder that can be traced almost around the study area. Below this 233 

narrow shoulder extending to depths of about 350 to 450 m, the slope becomes highly variable and 234 

topographically rugose, with gradients ranging between 28° to 55°. This geomorphic rough zone reflects a 235 

variable substrate of steep rock walls, interspersed with large boulders and narrow gravel-filled gullies 236 

(Fig. 3a and b). Below this rough zone from about 450 m, the slope becomes noticeably less steep as a 237 

broad sandy apron extends out around the base of Osprey Reef, with gradients easing from about 35° to 238 

10° at the limit of the dataset in 932 m. Occurring sporadically within this broad sand-covered apron are 239 

exposed vertical rock faces, several metres to 10s of m in scale, largely sediment-free and heavily Fe-Mn 240 
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stained (Fig. 3a and b). Several canyons also incise into and extend downward through the apron with 241 

their heads starting around 450 m at the upper limit of the apron. Within these canyons, loose boulders 242 

and gravel were observed that were not as heavily Fe-Mn stained as the in-situ rock walls found at 243 

equivalent depths, and also contrasting against the blanket of coarse white sand found on the main apron. 244 

 245 

Benthic assemblages 246 

Cluster analysis of the presence/absence data indicated five benthic assemblage groups at 45% similarity. 247 

In general, the PCO1 axis is associated with a gradient from a hard to soft substrate and the PCO2 axis 248 

reflects a deep to shallow gradient (Fig. 4). Together, the first two PCO axes explain 58.5% of the 249 

variability in taxa distribution. The BIOENV results indicated that the environmental variables: substrate 250 

type and depth, were significantly correlated (p < 0.001) to the observed distribution of benthos, 251 

explaining 37% of total variation. Table 2 shows the SIMPER results of the main contributing taxa for 252 

each of the five benthic assemblage groups. 253 

 254 

The following group assemblages are described from shallow (92 m upper limit) to deepest (787 m lower 255 

limit). The shallowest assemblage observed is the Group A mesophotic assemblage. Typically found 256 

above 150 m, this assemblage is dominated by a relatively high benthic coverage of large and dense 257 

gorgonian fans (Heliania spp., Annella spp.), sea whips (Junceella spp.), soft coral colonies 258 

(Chironephthya sp., Dendronephthya spp.) and sponges (Fig. 3c and f). A reduced coverage of smaller 259 

stylasterid corals, soft corals and bamboo coral (Lepidisis spp.) were found inside the caves and 260 

overhangs between 110 and 130 m (Fig. 5a and b). Samples within this group show a relatively high 261 

average similarity (SIMPER = 57.57%). Towards the deeper section of this zone, below the caves, 262 

benthic coverage reduced further and became more depauperate with large gorgonian fans situated mostly 263 

on prominent rock ridges, together with occasional large soft coral colonies and isolated bamboo corals 264 

(Keratoisis spp.). 265 

 266 

Group B is a relatively low coverage to barren, disphotic (150 to ~250 m) assemblage lying below the 267 

mesophotic group and occurs at the lower limits of light irradiance, with encrusting red algae observed in 268 

smaller patches on rocks only to ~200 m. This assemblage first appeared on the narrow (50 m across), 269 

gently sloping shoulder lying directly above the rough geomorphic zone, which stretches from about ~250 270 
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to 450 m (Fig. 5c and d). The assemblage is dominated by black corals (Sibopathes spp.), hydro corals 271 

(Stylaster spp.) and soft corals (Chironephthya spp.), together with crinoids clinging to the colonies (Fig. 272 

3c and f). SIMPER analysis shows a high average similarity of 75.10%. The substrate is mostly a thin 273 

veneer of sand with small patches of exposed rock and boulders providing attachment surfaces for the 274 

sessile fauna. The attachment of the larger coral colonies are more focussed on prominent vertical rock 275 

ridges rather than on the flatter, sand-draped rock between the ridges (Fig. 5c). 276 

 277 

Group C is a Lebensspuren (life traces) assemblage, typically found at depths below about 450 m within 278 

the gently-sloping apron zone (Fig. 6b and d). However, this group was not exclusively confined to these 279 

deeper depths as Lebensspuren were also observed in isolated patches of soft sediment within the gullies 280 

and on ledges within the rough geomorphic zone, which separates the apron from the disphotic and 281 

mesopelagic zones above (Fig. 3c and d). Lebensspuren were observed within the rough zone as shallow 282 

as 342 m. Typically, the Lebensspuren were characterised by numerous tracks, small pits and occasional 283 

large mounds left by the infauna and mobile fauna in these sandy habitats. This group occurred where the 284 

primary substrate is mostly all sand, which tends to be the predominant substrate of the gently-sloping 285 

apron zone. The only live fauna observed on the sand during the ROV transect were the occasional 286 

echinoid or ophiuroid roaming over the sandy surface, or isolated bamboo corals (Keratoisis spp.) poking 287 

through sand. This group showed a high average similarity of 71.95%.  288 

 289 

Group D is a low to medium cover coldwater assemblage within the aphotic zone below about 450 m on 290 

the apron (Fig. 6a, b and f). This assemblage is characterised by the hexactinellid sponge (Psilocalyx 291 

wilsoni) and isolated bamboo coral colonies (Lepidisis spp.), together with scattered holothurians, small 292 

shrimp and echiuran worms (Fig. 3c and f). SIMPER analysis shows only a low average similarity of 293 

5.85% between the samples, which can be explained by a large number of taxa observed in low 294 

abundance, for example the glass sponges were only at one site at 501 m. Typically, the sessile benthos 295 

were found attached to the boulders found in the canyon axes or on relatively small vertical rock faces 296 

with a low (<1 m) to moderate (1-3 m) relief that protrude through the sandy apron. Living biota typically 297 

occurred on hard primary substrate, but was also found where sand formed a thin veneer over rock, 298 

allowing colonisation by sessile biota. 299 

 300 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 
 

Group E is a relatively high biological cover coldwater assemblage found below about 450 m within the 301 

apron zone, occurring where isolated and relatively large (10s of m in scale) vertical rock walls protrude 302 

through the surrounding sand (Fig. 6c, d and e). The heavily Fe-Mn stained rock provides a substratum 303 

for the attachment of dense sessile fauna. This assemblage is dominated by infaunal polychaetes, bamboo 304 

corals (Isididae), worm shells (Vermetidae), stalked crinoids, and large colonies of golden corals 305 

(Chrysogorgia spp.) and occasional precious corals (Corallium sp.; Fig. 3c and f). Squat lobsters and 306 

other crustaceans were also observed on the rock substrate and up on the coral colonies. The average 307 

similarity among samples was a relatively high 53.47 %. 308 

 309 

Demersal and pelagic fauna 310 

While the focus of the ROV transect was on the substrate and sessile benthos, other demersal and pelagic 311 

fauna were also recorded. Chambered nautilus (Nautilus pompilius) were observed in the deeper apron 312 

zone at 501, 545, 580, 602, 612 and 625 m hovering or traveling over the seabed with no clear affinity to 313 

any particular substrate or relief (Fig. 3e). Grey cut-throat eels (Synaphobranchus affinis) were observed 314 

lying within nets attached to the vertical rock walls at 628 m. Coral reef fish were first observed in the 315 

rough geomorphic zone, despite a lack of benthic fauna. A silvertip shark (Carcharhinas albimarginatus) 316 

and a flowery cod (Epinephelus fuscoguttatus) were observed at 317 and 342 m, respectively. Oblique-317 

banded snapper (Pristipomoides zonatus) and the anthid (Odontanthias tapui) were observed swimming 318 

near bare rock overhangs at a depth of 283 m. This anthid was previously known only from the central 319 

East Pacific, representing a substantial range extension into Australian waters. Typical coral reef fish 320 

became more numerous above ~250 m, coinciding with the appearance of the narrow shoulder found 321 

above the rough zone. Fish density increased again in the shallower waters of the overhanging caves and 322 

reef wall found above ~150 m. 323 

 324 

Discussion 325 

Patterns of depth zonation 326 

Benthic assemblages at North Horn exhibited clearly defined patterns of depth zonation from 92 to 787 m 327 

water depth. We identified five benthic groups, the occurrence of which was determined by substrate type 328 

(sand versus exposed rock) in addition to depth. The most significant faunal break occurred at around 450 329 

m depth, with coldwater fauna below this depth. The accumulation of sediments in areas of low slope 330 
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generally restricted the occurrence of sessile benthos to steep slopes, vertical walls or overhangs. 331 

However, allochthonous sediments advected downslope appear to provide an important habitat for 332 

infauna and some detritivorous taxa, evidenced by the Lebensspuren, which did not occur on steeper 333 

slopes in association with sessile benthic fauna. 334 

 335 

Shallower than ~250 m depth, benthic assemblages were composed of a tropical fauna, whereas depths 336 

below ~450 m are comprised of coldwater taxa. Intermediate depths of ~250 to 450 m, found within the 337 

rough geomorphic zone, were depauperate in biodiversity despite the occurrence of hard substratum 338 

suitable for colonisation by sessile benthos. The CSIRO Atlas of Regional Seas (CARS2009; Dunn and 339 

Ridgeway 2002) climatology profile for north-western Osprey Reef shows the temperature at 450 m is 340 

10°C, dropping steadily to 4°C at 1000 m (Fig. 7). The cooler water masses at these depths first approach 341 

Subantarctic Mode Water (SAMW) below a depth of about 600 m, then Antarctic Intermediate Water 342 

(AAIW) below 700 to 1000 m. The change from tropical to coldwater assemblages in this depth range 343 

clearly reflects the change in water mass properties. The depauperate fauna between ~250 to 450 m may 344 

be caused by fluctuations in the depth of the thermocline within this depth range. The CARS climate 345 

profile shows a thermocline around 200 m (Fig. 7). However, the depth of the thermocline around oceanic 346 

atolls can vary substantially depending on factors such as the El Nino Southern Oscillation (Colin 2009). 347 

A deepening of the thermocline to ~450 m depth could preclude colonisation by coldwater taxa above 348 

these depths, while a shallower thermocline could define a lower depth limit for tropical fauna (Kahng et 349 

al. 2012). Fluctuations in temperature within the rough zone due to the vertical movement of the 350 

thermocline may be too great to allow either tropical or coldwater taxa to survive permanently here. 351 

 352 

The mesophotic assemblage occurred from the shallow limit of the transect at 92 m to a depth of around 353 

150 m. Mesophotic communities supported abundant octocorals but few hard corals below 100 m, 354 

consistent with previous observations from the Coral Sea (Sarano and Pichon 1988; Bongaerts et al. 355 

2011) and the shelf-edge of the Great Barrier Reef (Bridge et al. 2011; Bridge et al. 2012). The lack of 356 

hard corals at Osprey Reef and elsewhere in the Coral Sea at lower mesophotic depths is somewhat 357 

surprising given the exceptionally high water clarity and the greater abundance of hard corals at depths 358 

>100 m at other locations in the Indo-Pacific (Kahng and Maragos 2006; Kahng and Kelley 2007). The 359 

occurrence of benthic taxa may be influenced by the topography of the reef slope, particularly the caves 360 
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and overhangs observed between 110 and 130 m, which likely reflect lowstand sea level at the Last 361 

Glacial Maximum (Lambeck and Chappell 2001). The inside walls of these caves are mostly bare of 362 

sediment, being too steep to accumulate sand, and the lower light inside result in a noticeably reduced 363 

benthic cover and smaller coral colonies compared to the higher benthic cover and larger colonies just 364 

outside. The large gorgonian corals (Annella spp.) found around the 100 m depth are also the preferred 365 

habitat for pygmy seahorses (Hippocampus denise; Nishikawa et al. 2011). The ROV transect was 366 

terminated at a depth of 92 m, below the depth where the mesophotic assemblage typically transitions into 367 

a phototroph-dominated shallow-water community. However, a previous submersible dive by Sarano and 368 

Pichon (1988) suggests that assemblages dominated by typical shallow-water corals transition into the 369 

mesophotic octocoral-dominated community at ~65 m. This transition depth is supported by SCUBA 370 

observations by one of the authors (TB), and is also consistent with the transition from phototroph- to 371 

heterotroph-dominated assemblages on the Great Barrier Reef outer-shelf (Bridge et al. 2011). 372 

 373 

Below 150 m, we observed an increase in the abundance of fine sediments covering all non-vertical 374 

surfaces. The isolated patches of black corals, stylasterids and soft corals that did occur in the disphotic 375 

zone were found only on vertical rock ridges or where the underlying rock is exposed through a veneer of 376 

soft sediment. On the adjacent Great Barrier Reef shelf edge, a study of mesophotic communities on 377 

sediment-covered, submerged reefs also found octocorals were concentrated in areas least likely to 378 

accumulate sediment, along steep walls and the edges of reef crests (Bridge et al. 2011). Accumulation of 379 

sediments in regions of low slope suggests the blanket of sediment is an important factor in limiting the 380 

occurrence of sessile benthos. Although these sediments occurred throughout the ROV transect, the 381 

presence of coarse reef material and white sand at shallow depths suggests these sediments are derived 382 

from the reef flat and upper forereef slope and advected downslope. In addition to the influence of 383 

downwelling sediments, depth zonation in the disphotic zone was also influenced by declining light 384 

irradiance. The deepest observed phototrophic taxa were small patches of encrusting red algae observed at 385 

depths of ~200 m, suggesting this depth represents the deepest point where photosynthesis remains 386 

possible. 387 

 388 

Below 450 m, patches of dark, heavily FeMn-stained hard substratum protruding through the sand were 389 

densely covered with sessile and motile fauna. This habitat supported diverse benthic communities, 390 
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including the first record of precious corals found in tropical Australian waters (Wörheide et al. 2011; 391 

Wörheide et al. 2012), and other ‘relict’ fauna such as sea lilies, brachiopods (Lüter et al. 2003), coralline 392 

sponges (Wörheide 2008; Karlińska-Batres and Wörheide 2013) and glass sponges (Dohrmann et al. 393 

2011). These rocks walls are also preferred by the grey cut-throat eels seen lying within nets attached to 394 

the rock. This study provides the first description of such communities in Australia’s Coral Sea, 395 

highlighting the dearth of information on deep-sea biodiversity. 396 

 397 

In contrast to the diverse coldwater communities occurring on hard substratum, the majority of habitat 398 

below 450 m depth was gently-sloping and covered in coarse white sand. Although depauperate in sessile 399 

benthos, these habitats contained extensive Lebensspuren indicative of an abundant infaunal community. 400 

The abundance of Lebensspuren points to a relatively stable physical environment with low near-seabed 401 

currents and an absence of observed sediment slides required to preserve these life traces. In addition to 402 

the Lebensspuren communities below 450 m, we observed echinoderm and large echiuran worms of 403 

several metres in length in gravel-filled gullies in the rough geomorphic zone and in the larger canyon 404 

axes at 724 m (Fig. 5e and f). These detritivores appear to prefer these more dynamic habitats that 405 

typically funnel gravel and larger boulders downslope, and likely rely on the nutrients provided from the 406 

shallows. The Coral Sea is a period of high cyclonic activity, and these deep-water detritivore 407 

communities may partly rely on material transported by cyclones from the shallow reef into deeper 408 

waters. 409 

 410 

With up to a further 500-1500 m in elevation to the base of Osprey Reef, at ~1500 m on the Queensland 411 

Plateau or ~2500 m on the Queensland Trough side, we expect that additional benthic assemblage groups 412 

could be found. Deep-water scleractinian and alcyonacea habitat-forming corals are widely distributed 413 

throughout the southwest Pacific region (Bostock et al. 2015) and on the southern Tasmanian margin 414 

(Thresher et al. 2014). The coldwater scleractinian species: Solenosmilia variabilis, Enallopsammia 415 

rostrata and Madrepora oculata, are relatively cosmopolitan (Davies and Guinotte 2011), and while they 416 

were not seen in the ROV transect, Enallopsammia sp. and Madrepora sp. have been found as skeletal 417 

remains in a dredge sample 390 km south of Osprey Reef at 1170 m in the Queensland Trough, associated 418 

with a debris field of an undersea landslide (Beaman and Webster 2008). Around New Zealand, species 419 

of Solenosmilia, Enallopsammia and Madrepora have peak depth ranges of between 1000-1400 m, 600-420 
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1600 m and 1000-1200 m respectively, with AAIW providing optimum living conditions for scleractinian 421 

corals (Bostock et al. 2015). On the southern Tasmanian margin, Enallopsammia sp. are observed on 422 

seamounts to ~<1000 m, with Solenosmilia sp. observed 1000 to <1500 m (Thresher et al. 2014). One 423 

might expect that in the deeper waters around Osprey Reef, also living within AAIW, scleractinian corals 424 

will also be present. Future work is required to study if these deeper coldwater fauna exist, in addition to 425 

collecting detailed oceanographic samples. 426 

 427 

Implications for management 428 

The Coral Sea Commonwealth Marine Reserve, proclaimed by the Australian Government in 2012, 429 

encompasses nearly 1 million square kilometres and is currently under review. This review requires 430 

information on key ecological features and their conservation values, hence this research at Osprey Reef 431 

is timely. Currently, the no take zone at north-western Osprey Reef extends only to the shallow reef edge, 432 

providing little protection for the deeper assemblages described here (Bridge et al. 2013), or indeed 433 

protection against fishing of the resident reef sharks, which attract a sustainable dive tourism industry 434 

(Barnett et al. 2012). Many of the Coral Sea’s emergent reefs, which host a significant proportion of the 435 

region’s biodiversity, have received no additional protection within the new reserve (Bridge et al. 2015). 436 

Similar to Osprey Reef, other reefs within the reserve have no take zones that extend only to the reef 437 

edge, with limited protection for the deeper reef habitats on the outer reef slope known to support  diverse 438 

ecological communities (Bongaerts et al. 2011; Bridge et al. 2013; Englebert et al. 2014). 439 

 440 

Our results confirm that the deep-sea habitats of Osprey Reef support diverse benthic communities which 441 

can be used as a baseline to expand research against comparable depth zones on similar emergent reefs 442 

across the Queensland Plateau. Although this work is the result of only a single transect, there is a 443 

generally good concordance of samples within the groups. We expect that the overall depth-related 444 

patterns of the benthic zonation observed at Osprey Reef are broadly applicable to the other emergent 445 

reefs on the Queensland Plateau as they share a similar geological history, geomorphology and physical 446 

oceanography. Future research should aim to extend and test these observations at the other 29 emergent 447 

reefs on the plateau. With a total perimeter length of 1765 km around their summits, these reefs have 448 

potentially large areas of suitable habitat for diverse benthic communities extending into the depths 449 

around their flanks. The current review of the Coral Sea Commonwealth Marine Reserve is an 450 
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opportunity to adopt management plans that incorporate the deeper reef habitats within zones which help 451 

to minimise future damage to these marine ecosystems.  452 

 453 
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Figure and Table captions 579 

Fig. 1 Regional-scale map of the Osprey Reef study area in relation to the north-eastern Australia margin 580 
and the Queensland Plateau. Osprey Reef rises about 1500 m above the surrounding Queensland Plateau 581 
seafloor 582 
 583 

Fig. 2 3D-view of north-western Osprey Reef. The yellow line indicates the ROV transect below North 584 
Horn. The dive initially started in the water column and video recording commenced in 787 m at the 585 
seabed. White labels are geomorphic zones discussed in main text. Depth contours shown at 100 m 586 
intervals 587 
 588 

Fig. 3 Plan-views of the complete ROV transect: (a) Primary substrate; (b) Relief; (c) Biological cover; 589 
(d) Lebensspuren; (e) Pelagics; (f) selected Corals. Depth contours shown at 20 m intervals 590 
 591 

Fig. 4 PCA ordination plot showing similarity between sites based on the composition of the benthic taxa. 592 
Vectors are overlain showing the dominant taxa within groups (see Table 1). Group A is a mesophotic 593 
assemblage. Group B is a disphotic assemblage. Group C is a Lebensspuren (life traces) assemblage. 594 
Group D is a low cover, coldwater assemblage. Group E is a high cover, coldwater assemblage. In 595 
general, the PCO1 axis shows a hard to soft substrate and the PCO2 axis reflects a deep to shallow 596 
gradient. Together, PCO1 and PCO2 account for 58.5% of the taxa distribution 597 
 598 

Fig. 5 Representative still images from ROV transect shallower than 450 m: (a) 118 m rock and sand 599 
substrate with high relief. Rock surfaces with a high cover of Junceella spp. sea whips, Heliania spp. 600 
gorgonian fans, sponges and red algae; (b) 134 m rock substrate with rock wall relief. Prominent caves 601 
fringed with small stylasterid, Chironephthya spp., Dendronephthya spp. corals, sponges, and red algae; 602 
(c) 200 m rock and gravel substrate with high relief. Edges of rock walls have clusters of Chironephthya 603 
spp. and other large gorgonian fans; (d) 257 m rock and gravel substrate with high relief. Some upper 604 
surfaces and edges of rock have patches of stylasterid, antipatheria, and other soft corals; (e) 433 m rock 605 
and sand substrate with high relief. Motile echinoderms, such as brittlestars, are found on gravel between 606 
boulders. No corals observed; and (f) 456 m rock and gravel substrate with moderate relief. Minor FeMn 607 
oxide staining on rock in canyon axis with echiuran worm draped on gravel 608 
 609 

Fig. 6 Representative still images from ROV transect deeper than 450 m: (a) 501 m rock and sand 610 
substrate with moderate relief. Clusters of Psilocalyx wilsoni hexactinellid sponges on rock face; (b) 513 611 
m sand substrate with low relief. Dense Lebensspuren in sand with occasional Keratoisis spp. and 612 
Lepidisis spp. bamboo corals; (c) 603 m rock and sand substrate with rock wall relief. Heavy FeMn oxide 613 
staining on rock with golden, precious and bamboo corals, sponges, gastropods, polychaetes, 614 
echinoderms, and crustacea; (d) 625 m rock and sand substrate with rock wall relief. Dense Lebensspuren 615 
pits and tracks in sand. Heavy FeMn oxide staining on rock with high cover of Chrysogorgia spp. golden 616 
corals and Corallium sp. precious corals, echinoderms, polychaetes, and crustacea; (e) 714 m sand and 617 
rock substrate with moderate relief. Heavy FeMn oxide staining on rock with large bamboo coral and 618 
crustacean; and (f) 758 m boulder and gravel substrate with moderate relief. Light FeMn oxide staining 619 
on boulder and small colonies of Lepidisis spp. bamboo corals 620 
 621 

Fig. 7 CSIRO Atlas of Regional Seas (CARS) climatology profile for north-west Osprey Reef 622 
 623 

Table 1 Underwater video classification scheme of physical and biological parameters 624 
 625 

Table 2 SIMPER results of the main taxa contributing to the five benthic assemblage groups using the 626 
Bray-Curtis similarity measure 627 

Electronic Supplementary Material 628 

Excel spreadsheet of the video data matrix 629 
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Type Definition Abbreviation 

Primary substrate >50%   
rock* exposed bedrock s1_rock 
boulder* >25 cm loose material s1_bldr 
gravel* 2 mm-25 cm loose material s1_grav 
sand* lighter colour, grains visible to naked eye s1_sand 
mud darker than sand, grains not visible s1_mud 
Secondary substrate >25%   
rock* exposed bedrock s2_rock 
boulder* >25 cm loose material s2_bldr 
gravel* 2 mm-25 cm loose material s2_grav 
sand* lighter colour, grains visible to naked eye s2_sand 
mud* darker than sand, grains not visible s2_mud 
Features   
shell hash finely (~2 mm) broken shell material shl_hash 
sediment clouds sediment suspended from the bottom sed_cloud 
iceberg scour - recent sharp morphology scour_rec 
iceberg scour - relict subdued features bounded by ridges scour_rel 
glacial till unsorted glacial sediment,fine to coarse textures till 
vents seafloor vents vents 
manganese nodules manganese concretions mang_nod 
Relief   
rock wall* vertical wall with slope angle >80° r_wall 
high relief* >3 m relief r_high 
mod relief* 1-3 m relief r_mod 
low relief* <1 m relief r_low 
flat relief 0 m relief  r_flat 
Bedforms   
hummocky  irregular bedform, >50% terrain r_hum 
sand waves wave-like bedforms in sediment sand_wave 
sand ripples ripple-like bedforms in sediment ripples 
subtle waves bedforms less clearly defined sub_waves 
sand ribbons linear sheets of sand sand_rib 
Biological cover   
barren* no biota on sediment surface barren 
low* <10% low_cov 
medium* 10-50%  med_cov 
high* >50% high_cov 
Lebensspuren   
craters depression in surface sediment >10 cm wide leb_cratr 
pits* depression in surface sediment <10 cm wide leb_pit 
shell shell remains, e.g. midden leb_shl 
burrows holes penetrate surface leb_bur 
tracks* tracks visible on surface leb_trk 
mounds* mounds of sediment leb_mnd 
Biota   
3D sponge* Class Demospongiae sp_3d: 
encrusting sponge Class Demospongiae sp_encrst 
glass sponge* Class Hexactinellida sp_glass 
hard coral colonial Order Scleractinia h_cor_col 
hard coral fragment Order Scleractinia h_cor_frg 
hard coral solitary* Order Scleractinia h_cor_sol 

Table1



soft coral* Order Alcyonacea soft_cor 
black coral* Order Antipatharia blk_cor 
bamboo coral* Order Alcyonacea bam_cor 
golden coral* Order Alcyonacea gold_cor 
precious coral* Order Alcyonacea prec_cor 
hydroid colonial* Order Hydroidea hydr_col 
hydro coral* Order Anthoathecata hydr_cor 
gorgonian fan* Order Gorgonacea gorg_fan 
gorgonian whip* Order Gorgonacea whip 
sea pen  Order Pennatulacea seapen 
anemone on substrate* Order Actiniaria anem_sub 
anemone on invert Order Actiniaria anem_invt 
jellyfish Class Scyphozoa  jellyfish 
crinoid stalked* Class Crinoidea crin_stlk 
crinoid on substrate* Class Crinoidea crin_sub 
crinoid on invert* Class Crinoidea crin_invt 
basket star Class Ophiuroidea bskt_star 
brittle star on substrate* Class Ophiuroidea brit_sub 
brittle star on invert* Class Ophiuroidea brit_invt 
holothurian on substrate* Class Holothuroidea holo_sub 
holothurian on invert  Class Holothuroidea holo_invt 
holothurian infaunal Class Holothuroidea holo_inf 
urchin* Class Echinoidea urchin 
pencil urchin* Class Echinoidea urch_pen 
sea star on substrate Class Asteroidea star_sub 
sea star on invert  Class Asteroidea star_invt 
crustacea other  Subphylum Crustacea crust_oth 
shrimp* Subclass Eucarida  shrimp 
lobster* Order Decapoda lobster 
crab* Order Decapoda crab 
spider crab* Order Decapoda spid_crab 
hermit crab Order Decapoda herm_crab 
mantis shrimp Order Stomatopoda man_shrmp 
sea spider  Class Pycnogonida spider 
barnacle sessile Class Cirripedia barn_sess 
barnacle stalked Class Cirripedia barn_stlk 
brachiopod  Phylum Brachiopoda brachiop 
mollusc other any other mollusc molsc_oth 
bivalve  Class Bivalvia bivalve 
gastropod* Class Gastropoda  gastrpd 
slug Class Gastropoda  slug 
octopus* Class Cephalopoda oci 
squid  Class Cephalopoda  squid 
nautilus* Class Cephalopoda  nautilus 
pteropod Class Gastropoda  pteropod 
worm other* any other worm  worm_oth 
ribbon worm  Phylum Nemertea  worm_rib 
polychaete mobile Class Polychaeta  polych_mb 
polychaete infaunal* Class Polychaeta  plych_inf 
bryozoa  Phylum Bryozoa  bryo 
tunicate colonial Class Ascidiacea tun_col 
tunicate solitary Class Ascidiacea tun_sol 
fish* any fish species fish 
shark* Class Chondrichthyes shark 



ray or skate Class Chondrichthyes ray 
unkown sessile invert unknown sessile invertebrate attached to seabed ses_invrt 
unknown motile invert unknown motile invertebrate near seabed mot_invrt 
Additional   
missed missed record if classifying in real time missed 
interface* boundary between two substrata interface 
undefined* seabed not visible undefined 

 
*observed in this study. 
 
 
 
 
 
 
 
 
 



 

Group Taxa Av. Abundance Av. Similarity Contribution% Cumulative% 

A soft coral 1.00 34.72 60.31 60.31 

 gorgonian fan 0.66 11.53 20.02 80.33 

 3D sponge 0.48 5.38 9.35 89.68 

 gorgonian whip 0.38 3.70 6.43 96.12 

B black coral 1.00 34.80 46.33 46.33 

 crinoid on invertebrate 0.86 25.00 33.29 79.62 

 soft coral 0.57 7.65 10.19 89.81 

 hydro coral 0.57 7.65 10.19 100.00 

C pits 1.00 40.65 56.50 56.50 

 tracks 0.86 27.28 37.92 94.42 

 mounds 0.29 2.74 3.81 98.23 

D worm other 0.12 1.58 27.06 27.06 

 glass sponge 0.13 1.28 21.84 48.90 

 bamboo coral 0.13 1.15 19.74 68.64 

 holothurian on substrate 0.10 0.97 16.54 85.18 

 shrimp 0.11 0.65 11.08 96.26 

E polychaete infaunal 0.95 26.67 49.88 49.88 

 bamboo coral 0.75 12.45 23.28 73.16 

 gastropod 0.67 9.36 17.51 90.67 

 golden coral 0.32 1.70 3.18 93.85 

 crinoid stalked 0.25 0.94 1.75 95.61 

 

Table2
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