2,087 research outputs found

    Heavy fermion fluid in high magnetic fields: an infrared study of CeRu4_4Sb12_{12}

    Full text link
    We report a comprehensive infrared magneto-spectroscopy study of CeRu4_4Sb12_{12} compound revealing quasiparticles with heavy effective mass m^*, with a detailed analysis of optical constants in fields up to 17 T. We find that the applied magnetic field strongly affects the low energy excitations in the system. In particular, the magnitude of m^* \simeq 70 mb_b (mb_b is the quasiparticle band mass) at 10 K is suppressed by as much as 25 % at 17 T. This effect is in quantitative agreement with the mean-field solution of the periodic Anderson model augmented with a Zeeman term

    Site dilution of quantum spins in the honeycomb lattice

    Get PDF
    We discuss the effect of site dilution on both the magnetization and the density of states of quantum spins in the honeycomb lattice, described by the antiferromagnetic Heisenberg spin-S model. For this purpose a real-space Bogoliubov-Valatin transformation is used. In this work we show that for the S>1/2 the system can be analyzed in terms of linear spin wave theory. For spin S=1/2, however, the linear spin wave approximation breaks down. In this case, we have studied the effect of dilution on the staggered magnetization using the Stochastic Series Expansion Monte Carlo method. Two main results are to be stressed from the Monte Carlo method: (i) a better value for the staggered magnetization of the undiluted system, m=0.2677(6); (ii) a finite value of the staggered magnetization of the percolating cluster at the classical percolation threshold, showing that there is no quantum critical transition driven by dilution in the Heisenberg model. In the solution of the problem using linear the spin wave method we pay special attention to the presence of zero energy modes. Using a combination of linear spin wave analysis and the recursion method we were able to obtain the thermodynamic limit behavior of the density of states for both the square and the honeycomb lattices. We have used both the staggered magnetization and the density of states to analyze neutron scattering experiments and Neel temperature measurements on quasi-two- -dimensional honeycomb systems. Our results are in quantitative agreement with experimental results on Mn_pZn_{1-p}PS_3 and on the Ba(Ni_pMg_{1-p})_2V_2O_8.Comment: 21 pages (REVTEX), 16 figure

    Dental Education Economics: Challenges and Innovative Strategies

    Get PDF
    This article reviews current dental education economic challenges such as increasing student tuition and debt, decreasing funds for faculty salaries and the associated faculty shortage, and the high cost of clinic operations and their effect on the future of dentistry. Management tactics to address these issues are also reviewed. Despite recent efforts to change the clinical education model, implementation of proposed faculty recruitment and compensation programs, and creation of education- corporate partnerships, the authors argue that the current economics of public dental education is not sustainable. To remain viable, the dental education system must adopt transformational actions to re-engineer the program for long-term stability. The proposed re-engineering includes strategies in the following three areas: 1) educational process redesign, 2) reduction and redistribution of time in dental school, and 3) development of a regional curriculum. The intent of these strategies is to address the financial challenges, while educating adequate numbers of dentists at a reasonable cost to both the student and the institution in addition to maintaining dental education within research universities as a learned profession

    Accurate Results from Perturbation Theory for Strongly Frustrated S=1/2S=1/2 Heisenberg Spin Clusters

    Full text link
    We investigate the use of perturbation theory in finite sized frustrated spin systems by calculating the effect of quantum fluctuations on coherent states derived from the classical ground state. We first calculate the ground and first excited state wavefunctions as a function of applied field for a 12-site system and compare with the results of exact diagonalization. We then apply the technique to a 20-site system with the same three fold site coordination as the 12-site system. Frustration results in asymptotically convergent series for both systems which are summed with Pad\'e approximants. We find that at zero magnetic field the different connectivity of the two systems leads to a triplet first excited state in the 12-site system and a singlet first excited state in the 20-site system, while the ground state is a singlet for both. We also show how the analytic structure of the Pad\'e approximants at λ1|\lambda| \simeq 1 evolves in the complex λ\lambda plane at the values of the applied field where the ground state switches between spin sectors and how this is connected with the non-trivial dependence of the number on the strength of quantum fluctuations. We discuss the origin of this difference in the energy spectra and in the analytic structures. We also characterize the ground and first excited states according to the values of the various spin correlation functions.Comment: Final version, accepted for publication in Physical review

    Subtlety of Determining the Critical Exponent ν\nu of the Spin-1/2 Heisenberg Model with a Spatially Staggered Anisotropy on the Honeycomb Lattice

    Full text link
    Puzzled by the indication of a new critical theory for the spin-1/2 Heisenberg model with a spatially staggered anisotropy on the square lattice as suggested in \cite{Wenzel08}, we study a similar anisotropic spin-1/2 Heisenberg model on the honeycomb lattice. The critical point where the phase transition occurs due to the dimerization as well as the critical exponent ν\nu are analyzed in great detail. Remarkly, using most of the available data points in conjunction with the expected finite-size scaling ansatz with a sub-leading correction indeed leads to a consistent ν=0.691(2)\nu = 0.691(2) with that calculated in \cite{Wenzel08}. However by using the data with large number of spins NN, we obtain ν=0.707(6)\nu = 0.707(6) which agrees with the most accurate Monte Carlo O(3) value ν=0.7112(5)\nu = 0.7112(5) as well.Comment: 7 pages, 9 figures, 1 table, version accepted for publishin

    Skyrmion Hall Effect Revealed by Direct Time-Resolved X-Ray Microscopy

    Full text link
    Magnetic skyrmions are highly promising candidates for future spintronic applications such as skyrmion racetrack memories and logic devices. They exhibit exotic and complex dynamics governed by topology and are less influenced by defects, such as edge roughness, than conventionally used domain walls. In particular, their finite topological charge leads to a predicted "skyrmion Hall effect", in which current-driven skyrmions acquire a transverse velocity component analogous to charged particles in the conventional Hall effect. Here, we present nanoscale pump-probe imaging that for the first time reveals the real-time dynamics of skyrmions driven by current-induced spin orbit torque (SOT). We find that skyrmions move at a well-defined angle {\Theta}_{SH} that can exceed 30{\deg} with respect to the current flow, but in contrast to theoretical expectations, {\Theta}_{SH} increases linearly with velocity up to at least 100 m/s. We explain our observation based on internal mode excitations in combination with a field-like SOT, showing that one must go beyond the usual rigid skyrmion description to unravel the dynamics.Comment: pdf document arxiv_v1.1. 24 pages (incl. 9 figures and supplementary information

    Field-free deterministic ultra fast creation of skyrmions by spin orbit torques

    Full text link
    Magnetic skyrmions are currently the most promising option to realize current-driven magnetic shift registers. A variety of concepts to create skyrmions were proposed and demonstrated. However, none of the reported experiments show controlled creation of single skyrmions using integrated designs. Here, we demonstrate that skyrmions can be generated deterministically on subnanosecond timescales in magnetic racetracks at artificial or natural defects using spin orbit torque (SOT) pulses. The mechanism is largely similar to SOT-induced switching of uniformly magnetized elements, but due to the effect of the Dzyaloshinskii-Moriya interaction (DMI), external fields are not required. Our observations provide a simple and reliable means for skyrmion writing that can be readily integrated into racetrack devices

    Reduced clinical and postmortem measures of cardiac pathology in subjects with advanced Alzheimer's Disease

    Get PDF
    Background. Epidemiological studies indicate a statistical linkage between atherosclerotic vascular disease (ATH) and Alzheimer\u27s disease (AD). Autopsy studies of cardiac disease in AD have been few and inconclusive. In this report, clinical and gross anatomic measures of cardiac disease were compared in deceased human subjects with and without AD. Methods. Clinically documented cardiovascular conditions from AD (n = 35) and elderly non-demented control subjects (n = 22) were obtained by review of medical records. Coronary artery stenosis and other gross anatomical measures, including heart weight, ventricular wall thickness, valvular circumferences, valvular calcifications and myocardial infarct number and volume were determined at autopsy. Results. Compared to non-demented age-similar control subjects, those with AD had significantly fewer total diagnosed clinical conditions (2.91 vs 4.18), decreased coronary artery stenosis (70.8 vs 74.8%), heart weight (402 vs 489 g for males; 319 vs 412 g for females) and valvular circumferences. Carriage of the Apolipoprotein E-ε4 allele did not influence the degree of coronary stenosis. Group differences in heart weight remained significant after adjustment for age, gender, body mass index and apolipoprotein E genotype while differences in coronary artery stenosis were significantly associated with body mass index alone. Conclusions. The results are in agreement with an emerging understanding that, while midlife risk factors for ATH increase the risk for the later development of AD, once dementia begins, both risk factors and manifest disease diminish, possibly due to progressive weight loss with increasing dementia as well as disease involvement of the brain\u27s vasomotor centers. © 2011 Beach et al; licensee BioMed Central Ltd

    Plasmonic excitations in noble metals: The case of Ag

    Get PDF
    The delicate interplay between plasmonic excitations and interband transitions in noble metals is described by means of {\it ab initio} calculations and a simple model in which the conduction electron plasmon is coupled to the continuum of electron-hole pairs. Band structure effects, specially the energy at which the excitation of the dd-like bands takes place, determine the existence of a subthreshold plasmonic mode, which manifests itself in Ag as a sharp resonance at 3.8 eV. However, such a resonance is not observed in the other noble metals. Here, this different behavior is also analyzed and an explanation is provided.Comment: 9 pages, 8 figure
    corecore