3,018 research outputs found

    Standard-M mobile satellite terminal employing electronic beam squint tracking

    Get PDF
    In recent years, extensive experience has been built up at the University of Bristol in the use of the Electronic Beam Squint (EBS) tracking technique, applied to large earth station facilities. The current interest in land mobile satellite terminals, using small tracking antennas, has prompted the investigation of the applicability of the EBS technique to this environment. The development of an L-band mechanically steered vehicle antenna is presented. A description of the antenna is followed by a detailed investigation of the tracking environment and its implications on the error detection capability of the system. Finally, the overall hardware configuration is described along with plans for future work

    Spin pumping by a field-driven domain wall

    Full text link
    We calculate the charge current in a metallic ferromagnet to first order in the time derivative of the magnetization direction. Irrespective of the microscopic details, the result can be expressed in terms of the conductivities of the majority and minority electrons and the non-adiabatic spin transfer torque parameter β\beta. The general expression is evaluated for the specific case of a field-driven domain wall and for that case depends strongly on the ratio of β\beta and the Gilbert damping constant. These results may provide an experimental method to determine this ratio, which plays a crucial role for current-driven domain-wall motion.Comment: 4 pages, 1 figure v2: some typos corrected v3: published versio

    The analysis of reactively loaded microstrip antennas by finite difference time domain modelling

    Get PDF
    In recent years, much interest has been shown in the use of printed circuit antennas in mobile satellite and communications terminals at microwave frequencies. Although such antennas have many advantages in weight and profile size over more conventional reflector/horn configurations, they do, however, suffer from an inherently narrow bandwidth. A way of optimizing the bandwidth of such antennas by an electronic tuning technique using a loaded probe mounted within the antenna structure is examined, and the resulting far-field radiation patterns are shown. Simulation results from a 2D finite difference time domain (FDTD) model for a rectangular microstrip antenna loaded with shorting pins are given and compared to results obtained with an actual antenna. It is hoped that this work will result in a design package for the analysis of microstrip patch antenna elements

    Master equation approach to computing RVB bond amplitudes

    Full text link
    We describe a "master equation" analysis for the bond amplitudes h(r) of an RVB wavefunction. Starting from any initial guess, h(r) evolves (in a manner dictated by the spin hamiltonian under consideration) toward a steady-state distribution representing an approximation to the true ground state. Unknown transition coefficients in the master equation are treated as variational parameters. We illustrate the method by applying it to the J1-J2 antiferromagnetic Heisenberg model. Without frustration (J2=0), the amplitudes are radially symmetric and fall off as 1/r^3 in the bond length. As the frustration increases, there are precursor signs of columnar or plaquette VBS order: the bonds preferentially align along the axes of the square lattice and weight accrues in the nearest-neighbour bond amplitudes. The Marshall sign rule holds over a large range of couplings, J2/J1 < 0.418. It fails when the r=(2,1) bond amplitude first goes negative, a point also marked by a cusp in the ground state energy. A nonrigourous extrapolation of the staggered magnetic moment (through this point of nonanalyticity) shows it vanishing continuously at a critical value J2/J1 = 0.447. This may be preempted by a first-order transition to a state of broken translational symmetry.Comment: 8 pages, 7 figure

    Reconstructing glacial outburst floods (jökulhlaups) from geomorphology: challenges, solutions, and an enhanced interpretive framework

    Get PDF
    Glacial outburst floods (jökulhlaups) have been significant drivers of landscape change across Earth throughout the Quaternary and are a contemporary hazard in Arctic and alpine regions worldwide. Geomorphologic evidence is a foundation for reconstructing past and contemporary flood events and using additional analytical methods such as geochronology and paleohydraulics. Yet, accurate interpretation of jökulhlaup landforms and depositional sequences poses a persistent challenge due to complex controls on flood hydraulics and landscape evolution. Researchers have developed numerous strategies to reduce or resolve these challenges, but a comprehensive, globally applicable model to interpret flood evidence outside of sedimentary environments is lacking. This article synthesizes existing case studies to describe jökulhlaup geomorphologic interpretive challenges, discuss strategies to resolve them, and present a conceptual model of flood landform assemblages to illustrate hydraulic and environmental controls on resultant geomorphologic impacts. This enhanced interpretive framework aids researchers in identifying, interpreting, and testing geomorphologic evidence to reconstruct past jökulhlaups and predict future flood impacts as robustly as possible at a global, landscape-wide scale. Understanding jökulhlaup geomorphology yields insight into glacial lake and ice margin dynamics, the role of extreme events in landscape evolution, and interactions between climate, ice sheets, and hydrology. Moreover, it is increasingly important as glacial outburst floods may become more frequent due to climate-driven ice retreat, advancing predictive capacities to mitigate societal risk downstream.</div

    Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires

    Full text link
    Recent studies have shown that material structures, which lack structural inversion symmetry and have high spin-orbit coupling can exhibit chiral magnetic textures and skyrmions which could be a key component for next generation storage devices. The Dzyaloshinskii-Moriya Interaction (DMI) that stabilizes skyrmions is an anti-symmetric exchange interaction favoring non-collinear orientation of neighboring spins. It has been shown that material systems with high DMI can lead to very efficient domain wall and skyrmion motion by spin-orbit torques. To engineer such devices, it is important to quantify the DMI for a given material system. Here we extract the DMI at the Heavy Metal (HM) /Ferromagnet (FM) interface using two complementary measurement schemes namely asymmetric domain wall motion and the magnetic stripe annihilation. By using the two different measurement schemes, we find for W(5 nm)/Co20Fe60B20(0.6 nm)/MgO(2 nm) the DMI to be 0.68 +/- 0.05 mJ/m2 and 0.73 +/- 0.5 mJ/m2, respectively. Furthermore, we show that this DMI stabilizes skyrmions at room temperature and that there is a strong dependence of the DMI on the relative composition of the CoFeB alloy. Finally we optimize the layers and the interfaces using different growth conditions and demonstrate that a higher deposition rate leads to a more uniform film with reduced pinning and skyrmions that can be manipulated by Spin-Orbit Torques
    corecore