210 research outputs found

    Electrocorticogram as the Basis for a Direct Brain Interface: Opportunities for Improved Detection Accuracy

    Full text link
    A direct brain interface (DBI) based on the detection of event-related potentials (ERPs) in human electrocorticogram (ECoG) is under development. Accurate detection has been demonstrated with this approach (near 100% on a few channels) using a single-channel cross-correlation template matching (CCTM) method. Several opportunities for improved detection accuracy have been identified. Detection using a multiple-channel CCTM method and a variety of detection methods that take advantage of the simultaneous occurrence of ERPs and event-related desynchronization/synchronization (ERD/ERS) have been demonstrated to offer potential for improved detection accuracy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85993/1/Fessler183.pd

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier

    Get PDF
    The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells

    Development of a national pain management competency profile to guide entry-level physiotherapy education in Canada

    Get PDF
    Background: National strategies from North America call for substantive improvements in entry-level pain management education to help reduce the burden of chronic pain. Past work has generated a valuable set of interprofessional pain management competencies to guide the education of future health professionals. However, there has been very limited work that has explored the development of such competencies for individual professions in different regions. Developing profession-specific competencies tailored to the local context is a necessary first step to integrate them within local regulatory systems. Our group is working toward this goal within the context of entry-level physiotherapy (PT) programs across Canada. Aims: This study aimed to create a consensus-based competency profile for pain management, specific to the Canadian PT contextMethods: A modified Delphi was used to achieve consensus across Canadian university-based and clinical pain educators. Results: Representatives from 14 entry-level PT programs (93% of Canadian programs) and six clinical educators were recruited. After two rounds, a total of 15 competencies reached the pre-determined endorsement threshold (75%). Most participants (85%) reported being "very satisfied" with the process. Conclusions: This process achieved consensus on a novel pain management competency profile specific to the Canadian PT context. The resulting profile delineates the necessary abilities required by physiotherapists to manage pain upon entry-to-practice. Participants were very satisfied with the process. This study also contributes to the emerging literature on integrated research in pain management by profiling research methodology that can be used to inform related work in other health professions and regions

    Downregulation of RKIP Is Associated with Poor Outcome and Malignant Progression in Gliomas

    Get PDF
    Malignant gliomas are highly infiltrative and invasive tumors, which precludes the few treatment options available. Therefore, there is an urgent need to elucidate the molecular mechanisms underlying gliomas aggressive phenotype and poor prognosis. The Raf Kinase Inhibitory protein (RKIP), besides regulating important intracellular signaling cascades, was described to be associated with progression, metastasis and prognosis in several human neoplasms. Its role in the prognosis and tumourigenesis of gliomas remains unclear

    An Anillin-Ect2 Complex Stabilizes Central Spindle Microtubules at the Cortex during Cytokinesis

    Get PDF
    Cytokinesis occurs due to the RhoA-dependent ingression of an actomyosin ring. During anaphase, the Rho GEF (guanine nucleotide exchange factor) Ect2 is recruited to the central spindle via its interaction with MgcRacGAP/Cyk-4, and activates RhoA in the central plane of the cell. Ect2 also localizes to the cortex, where it has access to RhoA. The N-terminus of Ect2 binds to Cyk-4, and the C-terminus contains conserved DH (Dbl homologous) and PH (Pleckstrin Homology) domains with GEF activity. The PH domain is required for Ect2's cortical localization, but its molecular function is not known. In cultured human cells, we found that the PH domain interacts with anillin, a contractile ring protein that scaffolds actin and myosin and interacts with RhoA. The anillin-Ect2 interaction may require Ect2's association with lipids, since a novel mutation in the PH domain, which disrupts phospholipid association, weakens their interaction. An anillin-RacGAP50C (homologue of Cyk-4) complex was previously described in Drosophila, which may crosslink the central spindle to the cortex to stabilize the position of the contractile ring. Our data supports an analogous function for the anillin-Ect2 complex in human cells and one hypothesis is that this complex has functionally replaced the Drosophila anillin-RacGAP50C complex. Complexes between central spindle proteins and cortical proteins could regulate the position of the contractile ring by stabilizing microtubule-cortical interactions at the division plane to ensure the generation of active RhoA in a discrete zone

    Anxiety disorders in headache patients in a specialised clinic: prevalence and symptoms in comparison to patients in a general neurological clinic

    Get PDF
    Data from several studies indicate an association of headache with anxiety disorders. In this study, we assessed and differentiated anxiety disorders in 100 headache patients by using the PSWQ (Penn State Worry Questionnaire) screening tool for generalised anxiety disorder (GAD) and the ACQ (Agoraphobic Cognitions Questionnaire) and BSQ (Body Sensation Questionnaire) for panic disorder (PD). Control groups were constructed: (1) on the basis of epidemiological studies on PD and GAD in the general population and (2) by including neurological patients. 37.0% of headache patients had a GAD. 27% of headache patients met the score for PD in the BSQ, 4.0% in the ACQ. Significant results were obtained in comparison to the general population (p < 0.001) and with regard to GAD in comparison with a sample of neurological patients (p < 0.005). The BSQ significantly correlated with the number of medication days (p < 0.005). The results confirm the increased prevalence of GAD in headache patients. PD seems to increase the risk of medication overuse

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance

    Promotion of plasma membrane repair by vitamin E

    Get PDF
    Severe vitamin E deficiency results in lethal myopathy in animal models. Membrane repair is an important myocyte response to plasma membrane disruption injury as when repair fails, myocytes die and muscular dystrophy ensues. Here we show that supplementation of cultured cells with α-tocopherol, the most common form of vitamin E, promotes plasma membrane repair. Conversely, in the absence of α-tocopherol supplementation, exposure of cultured cells to an oxidant challenge strikingly inhibits repair. Comparative measurements reveal that, to promote repair, an anti-oxidant must associate with membranes, as α-tocopherol does, or be capable of α-tocopherol regeneration. Finally, we show that myocytes in intact muscle cannot repair membranes when exposed to an oxidant challenge, but show enhanced repair when supplemented with vitamin E. Our work suggests a novel biological function for vitamin E in promoting myocyte plasma membrane repair. We propose that this function is essential for maintenance of skeletal muscle homeostasis
    corecore