2 research outputs found

    Real-life outcomes in biotypes of psychotic disorders based on neurocognitive performance

    Get PDF
    Producción CientíficaAiming at discerning potential biotypes within the psychotic syndrome, we have recently reported the possible existence of two clusters or biotypes across schizophrenia and bipolar disorder characterized by their cognitive performance using the Brief Assessment of Cognition in Schizophrenia (BACS) instrument and validated with independent biological and clinical indexes (Fernández-Linsenbarth et al. in Schizophr Res 229:102–111, 2021). In this previous work, the group with larger cognitive deficits (N = 93, including 69 chronic schizophrenia, 17 first episodes (FE) of schizophrenia and 7 bipolar disorder patients) showed smaller thalamus and hippocampus volume and hyper-synchronic electroencephalogram than the group with milder deficits (N = 105, including 58 chronic schizophrenia, 25 FE and 22 bipolar disorder patients). We predicted that if these biotypes indeed corresponded to different cognitive and biological substrates, their adaptation to real life would be different. To this end, in the present work we have followed up the patients’ population included in that work at 1st and 3rd years after the date of inclusion in the 2021 study and we report on the statistical comparisons of each clinical and real-life outcomes between them. The first cluster, with larger cognitive deficits and more severe biological alterations, showed during that period a decreased capacity for job tenure (1st and 3rd years), more admissions to a psychiatric ward (1st year) and a higher likelihood for quitting psychiatric follow-up (3rd year). Patients in the second cluster, with moderate cognitive deficits, were less compliant with prescribed treatment at the 3rd year. The differences in real-life outcomes may give additional external validity to that yielded by biological measurements to the described biotypes based on neurocognition.Instituto de Salud Carlos III (grant ID PI18/00178)Dirección Regional de Salud de Castilla y León (grant ID GRS 2121/A/2020)Junta de Castilla y León - predoctoral grants from the Consejería de Educación and the European Social Fund (grant IDs VA-183-18 to IFL and VA- 223-19 to RMBRS)Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Search for schizophrenia and bipolar biotypes using functional network properties

    Get PDF
    Abstract Introduction Recent studies support the identification of valid subtypes within schizophrenia and bipolar disorder using cluster analysis. Our aim was to identify meaningful biotypes of psychosis based on network properties of the electroencephalogram. We hypothesized that these parameters would be more altered in a subgroup of patients also characterized by more severe deficits in other clinical, cognitive, and biological measurements. Methods A clustering analysis was performed using the electroencephalogram‐based network parameters derived from graph‐theory obtained during a P300 task of 137 schizophrenia (of them, 35 first episodes) and 46 bipolar patients. Both prestimulus and modulation of the electroencephalogram were included in the analysis. Demographic, clinical, cognitive, structural cerebral data, and the modulation of the spectral entropy of the electroencephalogram were compared between clusters. Data from 158 healthy controls were included for further comparisons. Results We identified two clusters of patients. One cluster presented higher prestimulus connectivity strength, clustering coefficient, path‐length, and lower small‐world index compared to controls. The modulation of clustering coefficient and path‐length parameters was smaller in the former cluster, which also showed an altered structural connectivity network and a widespread cortical thinning. The other cluster of patients did not show significant differences with controls in the functional network properties. No significant differences were found between patients´ clusters in first episodes and bipolar proportions, symptoms scores, cognitive performance, or spectral entropy modulation. Conclusion These data support the existence of a subgroup within psychosis with altered global properties of functional and structural connectivity
    corecore