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Abstract

Introduction: Recent studies support the identification of valid subtypes within

schizophrenia and bipolar disorder using cluster analysis. Our aim was to identify

meaningful biotypes of psychosis based on network properties of the electroen-

cephalogram.We hypothesized that these parameters would bemore altered in a sub-

group of patients also characterized bymore severe deficits in other clinical, cognitive,

and biological measurements.

Methods:A clustering analysis was performed using the electroencephalogram-based

network parameters derived from graph-theory obtained during a P300 task of 137

schizophrenia (of them,35 first episodes) and46bipolar patients. Bothprestimulus and

modulation of the electroencephalogram were included in the analysis. Demographic,

clinical, cognitive, structural cerebral data, and the modulation of the spectral entropy

of the electroencephalogramwere compared between clusters. Data from158healthy

controls were included for further comparisons.

Results:We identified two clusters of patients. One cluster presented higher prestim-

ulus connectivity strength, clustering coefficient, path-length, and lower small-world
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index compared to controls. The modulation of clustering coefficient and path-length

parameters was smaller in the former cluster, which also showed an altered structural

connectivity network and a widespread cortical thinning. The other cluster of patients

did not show significant differences with controls in the functional network proper-

ties. No significant differences were found between patientst’ clusters in first episodes

and bipolar proportions, symptoms scores, cognitive performance, or spectral entropy

modulation.

Conclusion: These data support the existence of a subgroup within psychosis with

altered global properties of functional and structural connectivity.

KEYWORDS

biotypes, bipolar disorder, diffusion, electroencephalogram, network, schizophrenia

1 INTRODUCTION

Schizophrenia may include a heterogeneous population with diverse

cerebral alterations that may underlie its clinical variability. Several

lines of evidence support this contention. A meta-analysis showed

increased variability within schizophrenia in relevant structural mea-

surements (Brugger & Howes, 2017). Moreover, structural magnetic

resonance imaging (MRI) data could discriminate subgroups within

schizophrenia with different clinical and biological characteristics

(Lubeiro et al., 2016; Planchuelo-Gómez et al., 2020). Specifically, the

existence of a group within the schizophrenia syndrome character-

ized by higher cortical curvature and lower cortical thickness was

revealed (Lubeiro et al., 2016). Moreover, a cluster could be found in

schizophrenia and bipolar disorder patients characterized by global

cortical thinning associated with cognitive deficits (Planchuelo-Gómez

et al., 2020). Neurophysiological data were also found to be different

between treatment-resistant (TR) and non-TR schizophrenia patients

(Molina et al., 2008). These differences included greater clinical

severity in TR patients and a more severe profile of alterations in

cerebral anatomical and electrophysiological parameters. Deficit

and nondeficit schizophrenia patients showed different structural

network properties (Wheeler et al., 2015). Furthermore, white matter

abnormalities discriminated between first-episode (FE) patients with

or without severe negative symptoms (Sun et al., 2015). Attending to

studies of mixed diagnostic groups of psychosis, another study defined

three biotypes cutting across the schizophrenia and schizoaffective

and bipolar diagnoses based on cognitive, neuroanatomical, and neu-

rophysiological data (Clementz et al., 2016), highlighting the existence

of a subgroup characterized by worse cognition and widespread gray

matter (GM) deficits. Furthermore, another study revealed a subgroup

of schizophrenia patients with widespread volumetric reductions

and worse cognitive deficits (Weinberg et al., 2016). Finally, a recent

study aimed at identifying subgroups within schizophrenia and bipolar

disorder patients based on their neurocognitive profile revealed the

existence of a cognitive severely impaired group which showed higher

symptom scores, a hypersynchronic basal connectivity state, and

lower fractional anisotropy of frontal tracts (Fernández-Linsenbarth

et al., 2021). Identifying biotypes in psychosis such as schizophrenia

and bipolar disorder may contribute to consider them not as homoge-

neous entities but as syndromes, that is, a collection of symptoms and

signs that may have different substrates. Thus, studies based on this

consideration of the likely existing heterogeneity in psychosis could

contribute to a better understanding of their neurobiological under-

pinnings, biomarkers definition, and the development of personalized

treatments.

The use of cerebral parameters related to the mental functions

could be useful in searching pathophysiologically meaningful biotypes

within psychosis. Although the cerebral substrates of mental activity

are incompletely understood, some facts can be reasonably assumed

and may be useful for the purpose of exploring the presence of those

biotypes. Mental activity is likely based on the fast-evolving synchro-

nization of neural assemblies distributed across the brain (Buzsáki &

Draguhn, 2004; Varela et al., 2001). The electroencephalogram (EEG)

reflects the bioelectrical signal resulting from such synchronization;

hence, EEG can be a useful tool for the analysis of the substrates of

mental functions.One advantage of theEEG is its high temporal resolu-

tion, due to the swiftly evolving synchrony of neural assemblies under-

lying cognition (Dehaene & Changeux, 2011; Uhlhaas & Singer, 2010).

Moreover, highermental functions such as those altered in schizophre-

nia likely implicatemanycerebral regions, supporting the consideration

of global cerebral networks rather than single-electrode localmeasure-

ments in analyses aimed at studying possible subtypes of psychosis.

The implementation of functional networks assessments based onEEG

and graph-theory measurements offers a tool for such studies, as pre-

viously shown (Cea-Cañas et al., 2020; Gomez-Pilar, de Luis-García,

Lubeiro, de la Red, et al., 2018; Gomez-Pilar, de Luis-García, Lubeiro,

de Uribe, et al., 2018).

In the present study, our aim is to explore the possibility of dis-

criminating meaningful biotypes within psychosis based on the global

network properties of the EEG and their modulation during cognitive

activity. In previous studies, we have shown significant differences

in these network properties between schizophrenia patients and
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controls (Gomez-Pilar, de Luis-García, Lubeiro, de la Red, et al., 2018)

and between schizophrenia and bipolar patients (Cea-Cañas et al.,

2020). The hypothesis here is that these network properties would be

more severely altered in a subgroup of patients also characterized by

alterations in other biological, cognitive, and/or clinical measurements.

We included bipolar patients due to the clinical and genetic overlap-

ping between these syndromes, considering that these patients are

included within the psychosis spectrum. Moreover, in order to discard

amajor effect of chronicity in the results, we also included first episode

patients thus being able to carry out repeated comparisons of these

patients within possible resulting subgroups.

2 MATERIALS AND METHODS

2.1 Participants

Our sample included 183 patients, 102 with chronic schizophrenia,

35 with FE schizophrenia, and 46 with type I bipolar disorder (BD; of

them 36 with psychotic features). Patients were diagnosed by one of

the experienced psychiatrists in the group according to the criteria

of the Diagnostic and Statistical Manual of Mental Disorders 5th edi-

tion, considering current mental state, clinical records, and relatives’

information. We also included 158 healthy controls (HC) to compare

the cognitive and biological characteristics of the resulting subgroups.

All subjects underwent clinical, cognitive, and EEG evaluation. For the

assessment of other biological properties, MRI data, including struc-

tural and fractional anisotropy (FA) data, were collected in 60 patients

and 28 HC. Social cognition data were available for 80 patients and 34

controls.

This sample mostly overlaps (89 patients and 34 HC) with one

from a previous report where we searched for MRI-based clus-

ters in schizophrenia and BD (Planchuelo-Gómez et al., 2020). Most

cases were also included in an assessment of biological differences

between patients characterized by their cognitive profile (Fernández-

Linsenbarth et al., 2021).

Exclusion criteria were (a) intelligence quotient under 70; (b)

present or past substance dependence (excluding caffeine and nico-

tine); (c) head trauma with loss of consciousness; (d) neurological

or mental primary diagnosis different from schizophrenia or bipo-

lar disorder (for patients); (e) any current neurological or psychi-

atric diagnosis (for HC); and (f) any other treatment affecting cen-

tral nervous system. All participants provided written informed con-

sent. The local ethics committee endorsed the study. This work com-

plies with the ethical standards of the Helsinki Declaration, revised

in 2008.

2.2 Symptoms assessment

Symptomswere scoredwith thePositive andNegative SyndromeScale

(PANSS) (Kay et al., 1987) and the Brief Assessment of Negative Symp-

toms Scale (BNSS) (Kirkpatrick et al., 2011).

F IGURE 1 P300waves for healthy controls (red line) and patients
(blue line) on the PZ (midline parietal) electrode for ‘‘attended’’ target
tones

2.3 Cognitive assessment

Cognition was assessed using the Spanish version of the Brief Assess-

ment of Cognition in Schizophrenia (BACS) (Segarra et al., 2011),

including performance in verbal memory, working memory, motor

speed, verbal fluency, attention and processing speed, and problem

solving, and the Wisconsin Card Sorting Test (WCST; percentage of

perseverative errors) (Chelune & Baer, 1986). Global IntelligenceQuo-

tient (IQ)was evaluatedwith the Spanish versionof theWechslerAdult

Intelligence Scale III (Fuentes Durá et al., 2010). Social cognition was

assessed with the Mayer, Caruso, and Salovey Emotional Intelligence

scale (MSCEIT) (Mayer et al., 2003).

2.4 EEG data

2.4.1 EEG data acquisition

EEG data were recorded during an auditory oddball task from a

32-channel system (Brain Vision [Brain Products GmbH]) following

the international 10–10 system. The auditory oddball three-condition

paradigm presented 600 random stimuli: target (500 Hz tone, proba-

bility of 0.2), distractor (1000 Hz tone, probability of 0.2), and stan-

dard (2000 Hz tone, probability of 0.6). Each tone lasted 50 ms and

comprised a rise and fall time of 5 ms with an intensity of 90 deci-

bels. The interstimulus interval randomly jittered between 1.16 and

1.44 s. Participants were asked to keep their eyes closed and to press

a button upon hearing target tones. Target tones were considered

‘‘attended’’ when followed by a button press. Only ‘‘attended’’ target

tones were considered for further analysis. Alertness differences were

controlled for by comparing the accuracies of the target response. Rep-

resentative P300 waves for HC and patients are shown in Figure 1 for

the ‘‘attended’’ target tones. Time-frequency-power representations
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F IGURE 2 Time-frequency-power representations for ‘‘attended’’ target tones on the PZ (midline parietal) electrode for healthy controls (left)
and patients (right)

for the ‘‘attended’’ target tones for HC and patients can be found in

Figure 2. Both figures illustrate data after preprocessing, artifact

and baseline corrections, and grand-averaging. More details of EEG

data acquisition and preprocessing can be found in the Supporting

Information.

2.4.2 EEG-based brain graphs and connectivity
strength calculation

In the construction of EEG-based brain graphs, network nodes are

a mathematical representation of the EEG electrodes, whereas the

values of the network edges are calculated from the neural coupling

between each pair of electrodes (Stam & van Straaten, 2012). This

coupling can be estimated with different methods. Here, we selected

the phase-locking value (PLV) across successive trials (Lachaux et al.,

1999), which is sensitive to low-amplitude oscillatory EEG components

(Spencer et al., 2003) in addition to nonlinearities (van Diessen et al.,

2015).

ThePLV, in turn, canbe computedusing differentmethodologies;we

used the continuouswavelet transform (CWT) using the convolution of

each trial with a scaled and translated version of the complex Morlet

wavelet. Thereby, the phase information from each trial is computed

(Bob et al., 2008) considering cones of influence to remove edge effects

(Torrence &Compo, 1998).

Applying the CWT approach for the performance of filter and phase

extraction in one operation, the PLV between two signals, x(t) and y(t),

was obtained evaluating the variability of the phase difference across

successive trials (Gomez-Pilar, de Luis-García, Lubeiro, de Uribe, et al.,

2018; Lachaux et al., 1999):

PLVxy (k, s) =
1
Nt

||||||

Nt∑
n = 1

eΔ𝜑xy (k,s,n)
||||||
, (1)

where Nt is the number of trials, Δφxy is the instantaneous phase dif-

ference between the signals x and y, k is the time interval, and s is the

scaling factor of themother wavelet.

We generated functional connectivity matrices using the PLV val-

ues. Due to the fact that no threshold was applied, these connectivity

matrices rangedbetween0and1; 0was obtainedwhen two signals had

no synchronization, and 1 was obtained when two signals were per-

fectly synchronized.

We selected two windows from the EEG signal: (i) the prestimu-

lus window, which corresponded to a period of expectation before the

stimulusonset from−300ms to the stimulusonset and (ii) the response

window, which is related to the P3b response (150–450 ms after the

stimulus onset). Thus, the prestimulus window is located during task

performance and is completely different from resting state. This proce-

dure was applied both for the EEG theta band (4–8 Hz) and the global

band (1–70 Hz) in which higher values of prestimulus connectivity

strength (CS) have been reported in previous studies in schizophrenia

(Gomez-Pilar, de Luis-García, Lubeiro, de la Red, et al., 2018; Gomez-

Pilar, de Luis-García, Lubeiro, de Uribe, et al., 2018).

2.4.3 Graph parameters

Once the functional connectivity matrices were obtained, the result-

ing matrices were analyzed by means of different parameters from

graph-theory field in order to characterize global connectivity prop-

erties of the brain network. Specifically, the present study focused on

four parameters of the brain network: segregation (clustering coeffi-

cient [CLC]), integration (path length [PL]), small-world index (SW), and

CS (Gomez-Pilar, de Luis-García, Lubeiro, de la Red, et al., 2018). These

parameters were computed in two windows: prestimulus (300 ms

before stimulus onset) and response (150–450 ms from the stimulus

onset, centered around the P300 peak). The corresponding difference
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between the response and prestimulus window was considered as the

modulation value,measuring thedegreeof changeof graphparameters

across time, that is, chronnectomics. Prestimulus and modulation net-

work values were used in clustering analysis. Complete details of the

graph parameters calculations can be found in the Supporting Informa-

tion.

It is important to note here the bias introduced by volume con-

duction effects in EEG studies (Brunner et al., 2016), particularly in

approaches involving connectivity metrics. These effects hamper the

estimation of the connectivity between the real activity sources. Prob-

ably the most used technique to tackle this problem is to perform a

source analysis, that is, to solve the inverseproblem. These approaches,

such as low-resolution tomography (LORETA), are able to identify

activity sources from which connectivity metrics can be computed.

However, they are not completely bias-free, and the inverse solution

problem remains unsolved, especially for nonhigh-density EEG (e.g.,

Hassan et al., 2014;Michel et al., 2004). Awell-knownalternative strat-

egy to minimize field spread is based on the assumption that volume

conduction affects the connectivity in a similar way in two different

experimental contrasts, such as the prestimulus and response condi-

tions (Bastos & Schoffelen, 2016). Therefore, the comparison between

these two conditions, as has been done in this study, reduces volume

conduction effects.

2.4.4 Spectral entropy

Furthermore, in previous studies, we identified a deficit of brain activ-

ity modulation with cognition in schizophrenia patients during a P300

task using the spectral entropy (SE) parameter (Bachiller et al., 2014;

Gomez-Pilar, de Luis-García, Lubeiro, de la Red, et al., 2018; Molina

et al., 2018) (see the Supporting Information). SE modulation was also

computed as the SE difference between response and prestimuluswin-

dows (Gomez-Pilar, de Luis-García, Lubeiro, de Uribe, et al., 2018), pro-

viding a measure of the degree of the signal regularity change across

time. Since a decrease on SE from prestimulus to response has been

robustly observed in HC, normal SE modulation is expected to be

expressed in negative values (Bachiller et al., 2014; Gomez-Pilar, de

Luis-García, Lubeiro, de la Red, et al., 2018;Molina et al., 2018).

2.5 Structural data

The structural data were based on the assessment of GM morphome-

try from T1-weighted data and structural connectivity from diffusion-

weighted MRI data. MRI acquisition details can be found in the

Supporting Information. The acquisition parameters were the same

employed previously to characterize psychosis subgroups from MRI

data (Planchuelo-Gómez et al., 2020).

2.5.1 MRI processing

Using the T1-weighted images, the segmentation pipeline from

FreeSurfer (http://surfer.nmr.mgh.harvard.edu) version 6.0.0 was

employed for the automatic cortical parcellation of GM regions (Dale

et al., 1999). The average cortical thickness and subcortical GMvolume

were extracted from regions included in the Desikan–Killiany atlas

(Desikan et al., 2006).We restricted our analysis to 14 bilateral cortical

regions (Table S1). Moreover, we calculated the GM volume of the

hippocampus, thalamus, caudate, putamen, and pallidum, as in our

previous work (Lubeiro et al., 2016).

2.5.2 Diffusion tensor imaging data

From thediffusion tensor imaging (DTI), the FA in connections between

pairs of regions was assessed, following the processing pipeline

described in Lubeiro et al. (2017). Anatomically constrained tractogra-

phy was obtained using the diffusion-weighted data (Jenkinson et al.,

2012), considering the FAas the structural connectivitymetric of inter-

est. The evaluated connections from the tractographywere focused on

regions from the prefrontal cortex (rostral middle frontal and superior

frontal gyri) and the limbic system (entorhinal cortex, parahippocampal

gyrus, and hippocampus). Connections in which null values were found

in a third (or more) of the subjects were discarded. A total of 46 homo-

lateral connections were analyzed.

2.6 Cluster extraction

Data were divided in main and replication datasets, according to the

recruitment center. The former included 80 patients with chronic

schizophrenia, 35 patients with FE, and 34 patients with BD. The

latter was composed of 22 patients with chronic schizophrenia and

12 patients with BD. The EEG parameters employed in the cluster

extraction were the PL, the SW coefficient (the CLC divided by the PL),

and the CS, all three in the prestimulus and modulation windows, for a

total of six variables included in the clustering analysis. These variables

were normalized with Z-scores before proceeding to the clustering

process to avoid a bias caused by the difference between the values

from each parameter. We decided to employ exclusively EEG network

parameters to focus on the functional connectivity differences within

psychosis and to avoid the employment of an excessive number of

parameters from diverse sources that may cause overfitting. More-

over, as secondary analysis, we evaluated structural connectivity and

cognition in the clusters extracted from the EEG network parameters.

In the main dataset, 26 indices were employed to extract the opti-

mal number of clusters (Supporting Information). A large number of

indiceswas employed to avoid thebias thatmaybeproducedby theuse

of a single or few indices. The majority rule (the value obtained with a

higher number of indices) was used as the selection criterion. In case of

a draw, the lowest number was chosen. This process was implemented

with the NbClust package included in R, where further details about

this clustering process can be found (Charrad et al., 2014).

For a specific number of clusters according to the majority rule, the

subgroups were extracted using the k-means clustering methods and

50 initial random centroids. The centroidswith the best silhouette pro-

file were chosen (Rousseeuw, 1987).
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We used the Clustering Large Application (CLARA) method

to assess the consistency of the k-means clustering (Kaufman &

Rousseeuw, 1990). Briefly, the CLARA method is based on the k-

medoids method, which is similar to the k-means method using the

median instead of the mean values. Here, the dataset was divided into

50 random subsets and the Euclidean distance was used as metric. The

classification results were comparedwith the k-means clusters.

To determine the most important features characterizing the

subgroups, a linear discriminant function was computed. A jackknife

procedure was employed to test the classification accuracy from the

discriminant function (Severiano et al., 2011). The discriminant scores

were separately computed for controls.

In the replication dataset, the previous procedures were also used.

The discriminant function obtained with the main dataset was applied

to the patients from the replication dataset and the classification

results were comparedwith the k-means clusters.

As secondary analysis, we repeated the clustering process exclud-

ing the BD patients, considering that some of them did not have psy-

chosis and the possible bias that theymay introduce into the clustering

results.

2.7 Statistical analysis of the clusters

Chi-squared and t-tests were used to compare age, sex distribution,

parental education level, positive and negative symptoms, illness dura-

tion, and treatment doses between patients’ clusters.

Analysis of variance (ANOVA) followed by pairwise comparisons

with Bonferroni correction was used to compare cognitive perfor-

mance, SE modulation, structural connective network, and regional

thickness between patients’ clusters and controls. The p-values from

the global ANOVA tests were corrected for multiple comparisons fol-

lowing theBenjamini–Hochberg false discovery rate procedure, group-

ing these p-values by sets of comparisons (e.g., EEG graph theory

parameters). We repeated these comparisons between FE patients in

each cluster using Mann–Whitney U-tests to discard a major effect of

chronicity in the results, without further correction for multiple com-

parisons due to the relatively small sample size.

As in our previous studies (Gomez-Pilar, de Luis-García, Lubeiro, de

Uribe, et al., 2018), the SE modulation in individual sensors was intro-

duced in a factor analysis and the resulting factor scores were used in

subsequent comparisons.

3 RESULTS

3.1 Cluster solutions

The optimal number of clusters in the main dataset according to the

majority rule was determined to be 2. A principal component analy-

sis (PCA) was carried out to summarize the information from the EEG

data and illustrate the clusters, but it was not used for clusterization.

The reason of not using PCA in the analysis but for illustration is that

F IGURE 3 Clusterization of the psychosis subgroups based on
electroencephalogram (EEG) graph theorymeasures in themain
dataset. Principal component analysis (PCA) was employed to
summarize the scores from the graph theorymeasures. The horizontal
axis represents the first principal component, and the vertical axis the
second component. The numbers represent identifiers for each
subject

this method is able to summarize information from diverse variables.

Bearing in mind the relatively low number of variables in this anal-

ysis, we considered that there was no need to summarize the infor-

mation and lose part of the original information. Figure 3 shows the

cluster plot based on the PCA values, and Figure S1 shows the opti-

mal number of clusters according to the 26 indices in themain dataset.

The corresponding results in the replication dataset can be observed in

Figures S2 and S3.

Cluster composition was as follows:

∙ Cluster 1 (C1): 42 chronic schizophrenia, 17 FE schizophrenia, and

16 BD patients from the main dataset and 11 chronic schizophrenia

and eight BD patients from the replication dataset;

∙ Cluster 2 (C2): 38 chronic schizophrenia, 18 FE schizophrenia, and

18 BD patients from themain dataset, and 11 chronic schizophrenia

and four BD patients from the replication dataset.

There were no significant differences in patients’ diagnoses distri-

bution between clusters, considering the subjects from both datasets

together (χ2 = 0.136, df= 2, p= 0.93). Therewere no significant differ-

ences between clusters in age, illness duration, or sex distribution.

Compared to the k-means classification of the main dataset, the

CLARA method obtained similar results, with 96.0% of the subjects

classified in the same clusters. Table S2 shows the comparison of the

clusters obtainedwith k-means and CLARA.

Regarding the jackknife analysis, 96.0% of accuracy was obtained

with respect to the k-means estimation. The classification results and
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FERNÁNDEZ-LINSENBARTH ET AL. 7 of 13

TABLE 1 Coefficients of the linear discriminant function

Variable

Discriminant

coefficient

Prestimulus path Length 0.315

Prestimulus connectivity strength 0.063

Modulation path length 1.000

Modulation connectivity strength −0.361

Prestimulus small-worldness −0.223

Modulation small-worldness 2.408

F IGURE 4 Scatter plot of the distribution of (a) prestimulus path
length andmodulation and (B) pre-stimulus small-worldness and
modulation in the identified clusters. Circles represent healthy
controls (HC), triangles represent patients from cluster 1 (C1), and
squares represent patients from cluster 2 (C2). The ellipsoids have a
radius of 1 SD

the coefficients of the discriminant function are shown in Tables 1 and

S3. In Table 1, it can be observed that the modulation of SW and PL are

the factors with the highest weight. Figure 4 depicts the residuals plot

with the value of those factors in the identified clusters. More details

regarding the differences of the EEG network parameters are shown

in Section 3.3. With respect to the classification of the subjects from

the replication sample using the discriminant function from the main

dataset, 82.4% of the subjects were classified in the same cluster as

using the k-means method. The classification of the replication dataset

is shown in Table S4.

The comparison of the discriminant values showed that patients

from C2 presented higher scores compared to patients from C1 and

controls (p < .0001 in both cases), while lower scores were identi-

fied in C1 patients with respect to controls (p < .0001; Figure 5). In

F IGURE 5 Violin and box plots illustrating the discriminant scores
of the patient subgroups and healthy controls from themain dataset.
C1, cluster 1; C2, cluster 2; HC, healthy controls; LDA, linear
discriminant analysis

Figure 5, it is worth noting that the outliers could give a wrong impres-

sion about the differences between the two clusters groups and con-

trols. The distribution of C2 scores is displaced to considerably higher

values compared to controls, and the distribution of C1 scores to lower

values. Similar trends were observed with the scores of the replication

dataset, but with no statistically significant differences (Figure S4).

Regarding the secondary analysis excluding the BD patients, the

extracted results were similar compared to the assessment with the

whole database (Figures S5 and S6). One subject (a chronic schizophre-

nia patient)wasexcludedbecause it producedanoutlier that biased the

clustering results. In C1, the final classification results were 42 chronic

schizophrenia and 17 FE patients in the main dataset, and 11 chronic

schizophrenia patients in the replication dataset. The FE patients and

the patients from the replication dataset were equally classified in

comparison with the original analysis, and nine chronic schizophre-

nia patients who were included in C2 in the original assessment were

classified as C1 in this case. In C2, the classification results were 37

chronic schizophrenia patients and 18 FE patients in the main dataset,

and 11 chronic schizophrenia patients in the replication dataset. The

FE patients and the patients from the replication dataset were equally

classified in comparison with the original analysis, and eight chronic

schizophrenia patients who were included in C1 in the original assess-

ment were classified as C2 in this case.

With respect to the discriminant function, the values of each factor

were similar compared to those from the original analysis, with higher

values of the two most important factors (modulation of SW and mod-

ulation of PL), and higher relevance of the prestimulus PL. Further-

more, the influenceof theprestimulus SWwasopposite (positive value)

compared to the weight from the original assessment (negative value).

These values are shown in Table S5.
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8 of 13 FERNÁNDEZ-LINSENBARTH ET AL.

TABLE 2 Clinical, cognitive, and demographic data

Cluster 1 Cluster 2 Controls

Age 38.59 (11.04)* 39.06 (11.96)* 31.49 (11.33)

Illness duration 6.92 (8.38) 16.01(26.67) N/A

Parents education (years) 11.07(4.85)* 9.95 (3.11)* 13.60 (4.49)

Verbal memory (BACS) 36.58 (12.51)** 37.50 (9.86)** 51.61 (8.05)

Workingmemory (BACS) 16.75 (4.97)** 16.98 (4.33)** 21.78 (3.61)

Motor speed (BACS) 60.94 (19.12)** 64.09 (16.59)* 70.57 (17.67)

Verbal fluency (BACS) 18.70 (7.15)* 19.47 (6.60)* 23.61 (10.67)

Performance speed (BACS) 41.21 (14.91)** 43.74 (11.29)** 67.72 (12.75)

Problem solving (BACS) 15.79 (4.92)* 16.34 (3.13) 17.81 (2.75)

%Perseverative errors (WCST) 19.80 (14.51) 16.82 (9.69)** 10.83 (8.83)

Total IQ (WAIS) 91.54 (14.69)** 94.55 (14.21) 113.45 (12.42)

Emotional intelligence (MSCEIT) 96.92 (21.55)** 99.47 (21.17)** 121.90 (11.36)

Positive symptoms (PANSS) 10.57 (3.69) 11.30 (4.91) N/A

Total negative symptoms (BNSS) 22.84 (17.73) 21.16 (16.21) N/A

Total symptoms (PANSS) 51.40 (20.34) 48.36 (20.19) N/A

CPZ equivalents (mg/day) 367.65(348.65) 295.29(212.09) N/A

Notes: Data are shown as mean (SD). All the results from the ANOVA comparisons assessing demographic variables and cognition survive the correction for

multiple comparisons.

Abbreviations: BACS, Brief Assessment of Cognition in Schizophrenia; BNSS, Brief Negative Symptom Scale; GEOPTE, Scale for Social Cognition for Psy-

chosis; IQ, IntelligenceQuotient;MSCEIT,Mayer-Salovey-Caruso Emotional Intelligence Test; PANS, Positive andNegative SyndromeScaleWAIS:Wisconsin

Card Sorting Test;WCST,Wechsler Adult Intelligence Scale.
*p< .05; **p< .01 in comparison tohealthy controls. Thesep-values are adjustedby corrections formultiple comparisons. Therewereno significant differences

between clusters of patients.

3.2 Cognitive and clinical comparisons

Current treatment doseswerenot significantly different between clus-

ters (Table 2).

Positive and negative symptoms were not significantly different

betweenC1 andC2 patients, nor between FE patients in these clusters

(Table S6).

Cognitive performance according to BACS and WCST was not sig-

nificantly different between clusters. Global IQ did not differ between

clusters. There were no significant differences between C1 and HC in

percentage of perseverative errors (WCST) nor between C2 and HC in

problem solving and total IQ. For all other cognitive domains, scores

were significantly lower in both patients’ clusters as compared to HC

(Table 2).When considered alone, FE patients in C2 showed lower per-

formance than FE cases in C1 in working memory (U = 55, z = −2.15,

p= .031) and, at trend level, in problem solving (U= 61.0, z=−1.7964,

p = .10) (Table S6). There were no significant differences in social cog-

nition scores between clusters.

3.3 EEG network parameters

A significant effect of the group was found for all variables of the func-

tional network (4.44< F< 62.48; .01> p> .0001). In the post hoc com-

parisons, prestimulus CS, CLC, and PL were higher in C2 as compared

to C1 andHC. SWwas lower in C2 compared to C1 andHC (Table 3).

Modulation of CLC and PL parameters was smaller in C2 compared

to C1 andHC, indicating that these parameters decreased in the active

window in C2 but increased in C1 and HC. SWmodulation was higher

in C2 (where SW value was higher in the response window) than in C1

and HC (where SWwas lower in the response window). Modulation of

CS was lower in C2, implying that CS increased more in C1 than in C2

(Table 3).

FE patients in C2 showed significantly longer baseline PL (U = 75,

z = 2.39, p = .007) and smaller SW values in broadband (U = 76,

z = −2.36, p = .018) compared to C1 FE patients. In C2, modulation

values of PL (U = 4, z = −4.83, p < .001) and CLC (U = 39, z = −3.64,

p< .001) were also smaller than C1 FE patients, andmodulation of SW

(U = 4, z = −3.83, p < .001) was higher in C2 patients (i.e., its values

were higher in the response) (Table S7).

3.4 Entropy modulation

As in our previous studies, a single factor summarizedmost of the vari-

ance for entropy modulation, with all sensors contributing positively

to that factor. Factor scores for spectral entropy modulation values

did not differ between clusters (C1 mean = 0.355, SD = 0.518; C2
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FERNÁNDEZ-LINSENBARTH ET AL. 9 of 13

TABLE 3 Prestimulus network values and its modulation with P300 task

Cluster 1 (n= 94) Cluster 2 (n= 89) Controls (n= 158)

Averaged clustering coefficient (CLC) 1.005 (0.003) 1.007 (0.004)**/## 1.005 (0.003)

Characteristic path length (PL) 1.077 (0.022) 1.100 (0.028)**/## 1.083 (0.033)

Connectivity strength (CS) 0.310 (0.050) 0.321 (0.032)** 0.300 (0.033)

CLCmodulation 0.001 (0.001) 0.000 (0.001)**/## 0.001 (0.001)

PLmodulation 0.007 (0.007)** −0.006 (0.006)**/## 0.002 (0.009)

CSmodulation 0.001 (0.007) −0.003 (0.009) # 0.000 (0.010)

Small-world index 0.933 (0.018)** 0.916 (0.021) **/## 0.928 (0.024)

Small-worldmodulation −0.005 (0.005)** 0.005 (0.004) **/## −0.001(0.006)

Note: Data are shown asmean (SD). All the ANOVA results survive the correction for multiple comparisons.
*p< .05; **p< .001 as compared to healthy controls.
#p< .05; ##p< .001 between patients’ clusters.

The previous p-values are adjusted by corrections for multiple comparisons.

TABLE 4 Structural connectivity network values

Cluster 1 (n= 30) Cluster 2 (n= 30) Controls (n= 27)

Clustering coefficient 0.995 (0.002) 0.995 (0.003) 0.996 (0.002)

Characteristic path length 1.015 (0.007) 1.019 (0.011)* 1.014 (0.005)

Small-world index 0.980 (0.007) 0.976 (0.012)* 0.982 (0.006)

Connectivity strength 0.324 (0.035) 0.314 (0.037)** 0.345 (0.030)

Note: Data are shown asmean (SD). The ANOVA results with statistically significant results survive the correction for multiple comparisons.
*p< .05; **p< .01 as compared to healthy controls. These p-values are adjusted by corrections formultiple comparisons. Therewere no significant differences

between clusters of patients.

mean = 0.194, SD = 0.666), but were significantly more positive in

both clusters than in controls (mean = −0.243, SD = 1.185; F = 8.59,

p < .0001), that is, as expected, EEG entropy did not decrease in both

patient clusters.

These values were also not significantly different between FE

patients in both clusters (U= 1272, z=−0.95, p= .339).

3.5 Structural connectivity network

A significant effect of group was found for structural PL (F = 3.76,

p= .027, adjusted-p= .039), SW (F= 3.69, p= .029, adjusted-p= .039),

and CS (F = 5.78, p = .004, adjusted-p = .016), where post hoc com-

parisons showed a significantly longer mean PL and smaller SW index

in C2 as compared to C1 and HC. Structural connectivity strength was

smaller in C2 as compared to HC (Table 4).

3.6 Cortical thickness

Significant effects of group were found for bilateral caudal and ros-

tral anterior cingulate cortex, parahippocampal gyrus, pars orbitalis,

pars triangularis, precentral cortex, insula, and superior temporal gyrus

regions (3.42 < F < 9.81; .16 > p > .00001). Post hoc comparisons

showed a widespread decrease of cortical thickness in C2 as com-

pared to controls (Table S1). With respect to C1, C2 showed a thick-

ness decrease in right caudal anterior cingulate, right cuneus, and right

insula. In comparison to HC, C1 patients showed a thinner cortex in a

smaller number of regions than C2 (Table S1).

C2 showed a bilateral thalamic volume decrease in comparison to

controls, although both comparisons did not survive the correction for

multiple comparisons.

Given the small number of FE patients with MRI data, we did not

compare structural data in FE patients between clusters.

3.6.1 DISCUSSION

Our results showed two clusters of patients with different functional

EEG network patterns across schizophrenia and bipolar syndromes.

The EEG network pattern of C1was similar to that of healthy subjects,

while C2 showed larger prestimulus CLC, PL, and CS, and smaller SW

values, with decreased modulation of CLC, PL, and CS. The structural

connective network showed altered patterns in C2 (with larger PL and

smallerCSandSWvalues). Cortical thicknesswas regionally decreased

in both groups, although this decreasewasmorewidespread in C2.We

did not find significant differences in symptoms severity, cognitive per-

formance, illness duration, or antipsychotic doses between clusters.
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10 of 13 FERNÁNDEZ-LINSENBARTH ET AL.

In our previous results using graph-theory applied to EEG data in

schizophrenia we found several baseline alterations. We reported that

schizophrenia patients showed higher CS values at baseline compared

toHC (Gomez-Pilar, de Luis-García, Lubeiro, de la Red, et al., 2018) and

to bipolar patients (Cea-Cañas et al., 2020). Besides, we also described

in schizophrenia patients higher CLC values at baseline (Gomez-Pilar

et al., 2017). Thesealterationswere found in the schizophreniapatients

when considered as a whole and could be expected to be more severe

in a subgroup of cases such as the cluster 2 in the present study.

Since SW is the CLC/PL ratio, the higher modulation SW values in

C2 is possibly consequence of the higher increase of PL in C1 and HC,

perhaps due to the involvement of a larger number of cortical regions

during task performance. Since response parameters are baseline cor-

rectedwith respect to the prestimulus condition, a larger increase inPL

would diminish SW at response and consequently lead to smaller SW

values in this window and thus to negative modulation values of SW in

C1 andHC.

Contrary to our expectations, the clusters based on functional net-

work characteristics did not differ in their cognitive performance or

symptoms. This may suggest that different cerebral substrates may

underpin similar clinical manifestations in different groups, that is,

symptoms and cognitive deficits may arise from different substrates.

Oneof such substratesmay relate to analterationof the functional net-

work, but our data suggest that even with a normal functional network

other factors may hamper cognition and underlie symptoms, which

seems coherent with the data supporting the biological heterogene-

ity of schizophrenia substrates (Arnedo et al., 2015; Molina & Blanco,

2013; Volk et al., 2012). Our results suggest that an alteration in struc-

tural connectivity (only found in C2) may be associated with an altered

functional network in only a subset of cases, although we cannot con-

clude that the former causes the latter. Perhaps the other patients’

symptoms and cognition may be underpinned by a biochemical dis-

balance not reflected in the functional architecture but that could be

caught by other kind of functional analyses. Furthermore, we assessed

functional connectivity related to a task, but not resting-state func-

tional connectivity. The specific behavior associated with a particular

task may present different properties compared to resting-state func-

tional connectivity. It has been reported that task-based and resting-

state functional connectivity present different network properties (Di

et al., 2013), considering additionally the distinct networks for specific

tasks and resting-state conditions. Therefore, structural connectivity,

cognition, and clinical symptoms may be more related to resting-state

or other tasks rather than the assessed task-based functional connec-

tivity of this study.

In support of such possibility, both clusters showed a decreased

modulation of their EEG activity during an oddball task as measured

with SE. We have described and replicated such a modulation deficit

in schizophrenia and bipolar disorder as a possible biomarker for the

altered function in this disorder (Molina et al., 2020, 2018). That deficit

was associated with cognitive deficits and negative symptoms (Molina

et al., 2020, 2018). This could explain why clusters in the present study

did not differ in these clinical dimensions, since SEmodulation is similar

between the clusters extracted in this study.

In a previous study that aimed to explore the existence of clusters

based on the neurocognitive profile, we reported that patients with

more severe cognitive deficits were also characterized by higher pres-

timulus CS of the EEG network (Fernández-Linsenbarth et al., 2021).

Thus, we could expect a significant cognitive deficit in C2with a higher

CS, but this was not found. Nevertheless, in that study, both cognitive

clusters showed a similar pattern of differences as compared to con-

trols in other neurophysiological data, that is, the same decrease in SE

modulation and a smaller CS modulation than HC. No other functional

network characteristicsweredifferent between the twocognitive clus-

ters identified in that study, where both clusters showed a significant

deficit in cognition as in the present one. Probably, depending on the

clustering criteria (cognition or EEG), the resulting group correlates

may differ slightly, although the global pattern would be that both nor-

mal and altered EEG network characteristics at baseline and its modu-

lation may be associated with different degrees of cognitive alteration

in schizophrenia andbipolar patients. This could alsobe consistentwith

thepossibility that altered functional networkdynamics areonly oneof

manypossible factors leading to symptomsandcognitive impairment in

these syndromes.

In thepresent study, C2patients also showedaltered structural con-

nectivity network properties. In a previous report, we did not find a sig-

nificant correlation between abnormal values of EEG network param-

eters and DTI-based network parameters in schizophrenia (Gomez-

Pilar, de Luis-García, Lubeiro, de la Red, et al., 2018). This apparent

discrepancy may be explained by two factors: that report included 39

schizophrenia patients, while the present one includes 60patientswith

EEGandDTI, andwe calculated correlations in the global sample, while

in the present study we compared values between clusters. The struc-

tural connectivity alteration in C2 does not imply that such alteration

underlies the corresponding functional network abnormalities.

On the other hand, the regional thinning was more widespread

in C2, which is reminiscent of our previous report of two clusters

characterized by different patterns of cortical thickness alterations

(Planchuelo-Gómez et al., 2020). There, we did not assess the EEG net-

work; thus, it is possible that both sets of findings converge on the

description of a schizophrenia cluster with significant anatomical (cor-

tical thickness and structural connectivity) deficits and an altered func-

tional network. One explanation could be that an anatomically normal

schizophrenia would also exist where an altered modulation of EEG

activitymay appear, and perhaps both alterations contribute to its clin-

ical manifestations.

Interestingly, the results show that clusters did not group them-

selves based on diagnostic categories. Traditionally, studies have tried

to identify the underlying pathophysiological mechanisms of clinical

diagnoses, considering them as unitary entities. However, results from

data-driven methodologies, like the one used in this study and the bio-

type literature, could support the consideration of disorders such as

schizophrenia and bipolar disorder as syndromes, including relevant

subgroups with different underpinnings. In this line, our results show

that certain anatomical and functional brain abnormalities may co-

occur in patients with different diagnoses, and those patients within

the same diagnose could present different substrates. This change in
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the way these disorders are conceived could also shed light on the tra-

ditionally lack of consistent replication of cerebral findings in them.

As a future research line, the integration of MRI, cognition, and

EEGdata should be performed to understand the interactions between

structure and function, and their relationship with cognition. Previ-

ously, the heterogeneity concerning GM morphometry and cognition

has been assessed (Fernández-Linsenbarth et al., 2021; Planchuelo-

Gómez et al., 2020). The separate evaluation of each area is important

to understand the diverse individual mechanisms related to psychosis

and the associations between the different paths of psychosis.

To conclude, it is worth noting that our data support the existence

of different subgroups within psychosis and may contribute to consid-

ering schizophrenia and bipolar disorder not as homogeneous noso-

logically entities but as syndromes. This notion can also help address

the lack of consistent results in previous literature. Finally, the charac-

terization of subgroups could contribute to understanding underlying

pathophysiological mechanisms. These mechanisms may be more eas-

ily identified through the analyses of biological parameters character-

izing subtypes than by comparing schizophrenia patients and controls.

This could also raise the possibility of developing personalized treat-

ments based on themost relevant altered underpinnings.

3.7 Limitations

Our study has limitations. The first limitation is its sample size.

Although a larger sample size would have been desirable, we were

able to obtain solid results. Second, biological tests were not avail-

able in all subjects. Third, the lack of untreated patients mean that

we cannot discard an effect of treatment on EEG values, although

we have previously reported nonsignificant effects of antipsychotic,

antidepressants, lithium, and benzodiazepines for these values (Molina

et al., 2020). Finally, although the volume conduction effects weremin-

imized by comparing two experimental contrast (i.e., EEGmodulation),

the results should be cautiously interpreted.

4 CONCLUSIONS

In conclusion, we found that an abnormal EEG-based connectivity net-

work is present in approximately half of the patients with schizophre-

nia andbipolar patients inwhich significant anatomical changes related

to GM cortical thickness and white matter connectivity were also

found. These alterations seem independent of chronicity and antipsy-

chotic treatment. EEG network alterations may characterize a biotype

across schizophrenia and bipolar diagnoses.
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