23 research outputs found

    Detection of chromothripsis-like patterns with a custom array platform for chronic lymphocytic leukemia

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.-- et al.Chronic lymphocytic leukemia (CLL) is a common disease with highly variable clinical course. Several recurrent chromosomal alterations are associated with prognosis and may guide risk-adapted therapy. We have developed a targeted genome-wide array to provide a robust tool for ascertaining abnormalities in CLL and to overcome limitations of the 4-marker fluorescence in situ hybridization (FISH). DNA from 180 CLL patients were hybridized to the qChip®Hemo array with a high density of probes covering commonly altered loci in CLL (11q22-q23, 13q14, and 17p13), nine focal regions (2p15-p16.1, 2p24.3, 2q13, 2q36.3-q37.1, 3p21.31, 8q24.21, 9p21.3, 10q24.32, and 18q21.32-q21.33) and two larger regions (6q14.1-q22.31 and 7q31.33-q33). Overall, 86% of the cases presented copy number alterations (CNA) by array. There was a high concordance of array findings with FISH (84% sensitivity, 100% specificity); all discrepancies corresponded to subclonal alterations detected only by FISH. A chromothripsis-like pattern was detected in eight cases. Three showed concomitant shattered 5p with gain of TERT along with isochromosome 17q. Presence of 11q loss was associated with shorter time to first treatment (P=0.003), whereas 17p loss, increased genomic complexity, and chromothripsis were associated with shorter overall survival (P<0.001, P=0.001, and P=0.02, respectively). In conclusion, we have validated a targeted array for the diagnosis of CLL that accurately detects, in a single experiment, all relevant CNAs, genomic complexity, chromothripsis, copy number neutral loss of heterozygosity, and CNAs not covered by the FISH panel. This test may be used as a practical tool to stratify CLL patients for routine diagnostics or clinical trials.Supported by: Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III (ISCIII), Grant numbers: PI11/01177, PI14/00571; Worldwide Cancer Research; Grant number: 12-0142; Marato de TV3; Grant number: TV3-Cancer/2013410; Generalitat de Catalunya Suport Grups de Recerca; Grant number: 2013-SGR-378; Red Tematica de Investigacion Cooperativa en Cancer (RTICC), Grant numbers: RD12/0036/0036, RD12/0036/0023, RD12/0036/0004, RD12/0036/0069; Subprograma Juan de la Cierva, Grant number: JCI-2011-10232; Miguel Servet Contract, Grant number: CP13/00159; the Spanish Ministry of Science and Innovation (MICINN) through the ISCIII —International Cancer Genome Consortium for Chronic Lymphocytic Leukemia (ICGC-CLL Genome Project); Institucio Catalana de Recerca i Estudis Avançats” (ICREA) of the Generalitat de Catalunya; European Regional Development Fund “Una manera de fer Europa”; Alexander von Humboldt Post-doctoral Fellowship.Peer Reviewe

    Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients

    Get PDF
    Chromosome banding; Chronic lymphocytic leukemia patientsBandas cromosómicas; Leucemia linfocítica crónicaBandes cromosòmiques; Leucèmia limfocítica crònicaGenome complexity has been associated with poor outcome in patients with chronic lymphocytic leukemia (CLL). Previous cooperative studies established five abnormalities as the cut-off that best predicts an adverse evolution by chromosome banding analysis (CBA) and genomic microarrays (GM). However, data comparing risk stratification by both methods are scarce. Herein, we assessed a cohort of 340 untreated CLL patients highly enriched in cases with complex karyotype (CK) (46.5%) with parallel CBA and GM studies. Abnormalities found by both techniques were compared. Prognostic stratification in three risk groups based on genomic complexity (0-2, 3- 4 and ≥5 abnormalities) was also analyzed. No significant differences in the percentage of patients in each group were detected, but only a moderate agreement was observed between methods when focusing on individual cases (κ=0.507; P<0.001). Discordant classification was obtained in 100 patients (29.4%), including 3% classified in opposite risk groups. Most discrepancies were technique-dependent and no greater correlation in the number of abnormalities was achieved when different filtering strategies were applied for GM. Nonetheless, both methods showed a similar concordance index for prediction of time to first treatment (TTFT) (CBA: 0.67 vs. GM: 0.65) and overall survival (CBA: 0.55 vs. GM: 0.57). High complexity maintained its significance in the multivariate analysis for TTFT including TP53 and IGHV status when defined by CBA (hazard ratio [HR] 3.23; P<0.001) and GM (HR 2.74; P<0.001). Our findings suggest that both methods are useful but not equivalent for risk stratification of CLL patients. Validation studies are needed to establish the prognostic value of genome complexity based on GM data in future prospective studies

    Frequent polymorphic changes but not mutations of TRAIL receptors DR4 and DR5 in mantle cell lymphoma and other B-cell lymphoid neoplasms

    Get PDF
    Background and objectives: tumor necrosis factor related apoptosis-inducing ligand (TRAIL) receptors DR4 and DR5 have been mapped to chromosome 8p21-22, a region frequently deleted in different lymphoid neoplasms. Design and methods: to investigate the potential alterations of these genes in lymphoid neoplasms, we examined the presence of gene mutations in exons 3, 4, and 9 in 69 cases with mantle cell lymphoma (MCL), 16 with chronic lymphocytic leukemia (CLL), 12 with follicular lymphomas (FL) and 17 with large B-cell-lymphomas (DLBCL), as well as in 4 lymphoid cell lines carrying the t(11;14) translocation, and 91 healthy blood donors. Results: three CLL and three MCL cases had 8p deletions. Two nucleotide changes in or near the intron 3 splice consensus sequence and a silent change were found. These rare changes were also present in the germ-line of the patients. The DR4 death domain A1322G polymorphism was significantly more frequent in MCL [odds ratio (OR) = 5.9; 95% confidence interval (CI), 1.92-18.1] and CLL (OR = 4.5; CI, 1.18-17) patients than in a sex and age-adjusted healthy population. In contrast, the DR4 exon 4 C626G polymorphism was associated with a significant overall decreased risk for MCL (OR = 0.3; CI, 0.12-0.8). No mutations or cancer-associated polymorphic changes were found in DR5 domains. Interpretation and conclusions: these findings indicate that mutations of DR4 and DR5 are uncommon in lymphoid neoplasms but DR4 polymorphic alleles may contribute to the pathogenesis of these malignancies

    SNP-based mapping arrays reveal high genomic complexity in monoclonal gammopathies: from MGUS to myeloma status

    Get PDF
    Trabajo presentado al 53rd ASH Annual Meeting and Exposition celebrado en San Diego (US) del 10 al 13 de diciembre de 2011.-- et al.Peer reviewe

    Mutational Landscape and tumor burden assessed by cell-free DNA in Diffuse Large B-Cell Lymphoma in a population-based study

    Full text link
    Purpose: We analyzed the utility of cell-free DNA (cfDNA) in a prospective population-based cohort to determine the mutational profile, assess tumor burden, and estimate its impact in response rate and outcome in patients with diffuse large B-cell lymphoma (DLBCL). Experimental design: A total of 100 patients were diagnosed with DLBCL during the study period. Mutational status of 112 genes was studied in cfDNA by targeted next-generation sequencing. Paired formalin-fixed, paraffin-embedded samples and volumetric PET/CT were assessed when available. Results: Appropriate cfDNA to perform the analyses was obtained in 79 of 100 cases. At least one mutation could be detected in 69 of 79 cases (87%). The sensitivity of cfDNA to detect the mutations was 68% (95% confidence interval, 56.2-78.7). The mutational landscape found in cfDNA samples was highly consistent with that shown in the tissue and allowed genetic classification in 43% of the cases. A higher amount of circulating tumor DNA (ctDNA) significantly correlated with clinical parameters related to tumor burden (elevated lactate dehydrogenase and β2-microglobulin serum levels, advanced stage, and high-risk International Prognostic Index) and total metabolic tumor volume assessed by PET/CT. In patients treated with curative intent, high ctDNA levels (>2.5 log hGE/mL) were associated with lower complete response (65% vs. 96%; P < 0.004), shorter progression-free survival (65% vs. 85%; P = 0.038), and overall survival (73% vs. 100%; P = 0.007) at 2 years, although it did not maintain prognostic value in multivariate analyses. Conclusions: In a population-based prospective DLBCL series, cfDNA resulted as an alternative source to estimate tumor burden and to determine the tumor mutational profile and genetic classification, which have prognostic implications and may contribute to a future tailored treatment

    Ibrutinib in Combination With Rituximab for Indolent Clinical Forms of Mantle Cell Lymphoma (IMCL-2015): A Multicenter, Open-Label, Single-Arm, Phase II Trial

    Get PDF
    PURPOSE The need for an individualized management of indolent clinical forms in mantle cell lymphoma (MCL) is increasingly recognized. We hypothesized that a tailored treatment with ibrutinib in combination with rituximab (IR) could obtain significant responses in these patients. METHODS This is a multicenter single-arm, open-label, phase II study with a two-stage design conducted in 12 Spanish GELTAMO sites (ClinicalTrials.gov identifier: NCT02682641). Previously untreated MCL patients with indolent clinical forms defined by the following criteria were eligible: no disease-related symptoms, nonblastoid variants, Ki-67 < 30%, and largest tumor diameter <= 3 cm. Both leukemic non-nodal and nodal subtypes were recruited. Patients received ibrutinib 560 mg once daily and a total of eight doses of rituximab 375 mg/m(2). Ibrutinib could be discontinued after 2 years in the case of sustained undetectable minimal residual disease (MRD). The primary end point was the complete response (CR) rate achieved after 12 cycles according to Lugano criteria. RESULTS Fifty patients with MCL (male 66%; median age 65 years) were enrolled. After 12 cycles of treatment, 42 (84%; 95% CI, 74 to 94) patients had an overall response, including 40 (80%; 95% CI, 69 to 91) with CR. Moreover, undetectable MRD in peripheral blood was achieved in 87% (95% CI, 77 to 97) of cases. At 2 years, 24 of 35 evaluable patients (69%) could discontinue ibrutinib because of undetectable MRD. Four patients had disease progression; three were non-nodal MCL and carried high genomic complexity and TP53 mutations at enrollment. No unexpected toxicity was seen except one patient with severe aplastic anemia. CONCLUSION Frontline IR combination achieves a high rate of CRs and undetectable MRD in indolent clinical forms of MCL. Discontinuation seems appropriate in cases with undetectable MRD, except for TP53-mutated cases

    ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances

    No full text
    The ataxia-telangiectasia mutated (ATM) gene codifies for a protein critically involved in the cellular response to DNA damage, ATM alterations have been observed in some sporadic lymphoproliferative disorders. The recurrent 11q22-23 deletions found in mantle cell lymphoma (MCL) suggest that ATM could be inactivated in these lymphomas. In this study, ATM gene alterations and protein expression were examined in 20 and 17 MCL tumor specimens, respectively. Previously, these patients had been examined for p53 and p14ARF gene status and analyzed by comparative genomic hybridization. Nine patients had 11q22-23 losses. Eight ATM gene mutations were detected in 7 patients. These alterations were 3 missense mutations in the phosphatidyl-inositol-3 kinase (PI-3K) domain and 5 truncating mutations,including 3 frame-shifts, a nonsense mutation, and a substitution of the initial methionine. All truncating mutations were associated with lack of protein expression. Somatic origin was demonstrated in 3 mutations, whereas one mutation was carried heterozygously in the patient germ line. Chromosomal imbalances were significantly higher in typical MCL with ATM inactivation(7.8 ± 1.3) than in tumors with the wild-type gene (3 ± 1.1) (P= .001). Moreover, tumors with bi-allelic ATM alteration were associated with 3q gains (P = .015) and frequent extranodal involvement (P = .049). ATM gene alterations were not related to the histologic variant of the tumors,p53/p14ARF gene status, survival, or other clinicopathologic features of the patients. These findings indicate that ATM gene mutations in MCL are mainly truncating or missense mutations involving the PI-3K domain,and that may play a role in the pathogenesis of a subset of these tumors with increased numbers of chromosomal imbalances. © 2002 by The American Society of Hematology.Supported by the Comision Interministerial de Ciencia y Tecnologia (CICYT) SAF 99/20, European Commission contract QLRT-1999-30687, FEDER 1FD97-1678, and CIRIT, Generalitat de Catalunya 2000SGR118.Peer Reviewe
    corecore