1,779 research outputs found

    Effect of maternal panic disorder on mother-child interaction and relation to child anxiety and child self-efficacy

    Get PDF
    To determine whether mothers with panic disorder with or without agoraphobia interacted differently with their children than normal control mothers, 86 mothers and their adolescents (aged between 13 and 23 years) were observed during a structured play situation. Maternal as well as adolescent anxiety status was assessed according to a structured diagnostic interview. Results showed that mothers with panic disorder/agoraphobia showed more verbal control, were more criticizing and less sensitive during mother-child interaction than mothers without current mental disorders. Moreover, more conflicts were observed between mother and child dyadic interactions when the mother suffered from panic disorder. The comparison of parenting behaviors among anxious and non-anxious children did not reveal any significant differences. These findings support an association between parental over-control and rejection and maternal but not child anxiety and suggest that particularly mother anxiety status is an important determinant of parenting behavior. Finally, an association was found between children’s perceived self-efficacy, parental control and child anxiety symptoms

    Protective Effects of Memantine on Hydroquinone-Treated Human Retinal Pigment Epithelium Cells and Human Retinal Muller Cells

    Get PDF
    Purpose: Memantine (MEM) acts on the glutamatergic system by blocking N-methyl-d-aspartate (NMDA) glutamate receptors. The role that MEM plays in protecting retinal cells is unknown. Hydroquinone (HQ) is one of the cytotoxic components in cigarette smoke. In the present study, we tested whether pretreatment with MEM could protect against the cytotoxic effects of HQ on human retinal pigment epithelium cells (ARPE-19) and human retinal Müller cells (MIO-M1) in vitro. Methods: Cells were plated, pretreated for 6 h with 30 μM of MEM, and then exposed for 24 h to 200, 100, 50, and 25 μM of HQ while MEM was still present. Cell viability (CV), reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), and lactate dehydrogenase (LDH) release assays were performed. Results: HQ-treated cells showed a dose-dependent decrease in CV and ΔΨm, but an increase in ROS production and LDH levels in both cell lines. MEM pretreatment reversed the CV in 50, 100, and 200 μM doses in ARPE-19 cells and at all HQ concentrations in MIO-M1 cells compared to HQ-treated cultures. ROS production was reversed in all HQ concentrations in both cell lines. ΔΨm was significantly increased after MEM pretreatment only in 50 μM HQ concentration for both cell lines. LDH levels were decreased at 50 and 25 μM HQ in ARPE-19 and MIO-M1 cells, respectively. Conclusion: HQ-induced toxicity is concentration dependent in ARPE-19 and MIO-M1 cultures. MEM exerts protective effects against HQ-induced toxicity on human retinal pigment epithelial and Müller cells in vitro

    Uniaxial Stress Effects on the Low-Field Magnetoacoustic Interactions in Low and Medium Carbon Steels

    Get PDF
    In the past, we have shown that the low-field magnetoacoustic technique is capable of detecting uniaxial compression in steel components without necessiating a calibration standard [1,2]. This is because the initial slope of the AF(B)/F curve (fractional frequency change of phase-locked acoustic waves as a function of net magnetic induction) is negative only under compression and positive otherwise, when the specimens are magnetized along the static unaxial stress axis.</p

    An extended window of opportunity for G-CSF treatment in cerebral ischemia

    Get PDF
    BACKGROUND: Granulocyte-colony stimulating factor (G-CSF) is known as a powerful regulator of white blood cell proliferation and differentiation in mammals. We, and others, have shown that G-CSF is effective in treating cerebral ischemia in rodents, both relating to infarct size as well as functional recovery. G-CSF and its receptor are expressed by neurons, and G-CSF regulates apoptosis and neurogenesis, providing a rational basis for its beneficial short- and long-term actions in ischemia. In addition, G-CSF may contribute to re-endothelialisation and arteriogenesis in the vasculature of the ischemic penumbra. In addition to these trophic effects, G-CSF is a potent neuroprotective factor reliably reducing infarct size in different stroke models. RESULTS: Here, we have further delayed treatment and studied effects of G-CSF on infarct volume in the middle cerebral artery occlusion (MCAO) model and functional outcome in the cortical photothrombotic model. In the MCAO model, we applied a single dose of 60 μg/kg bodyweight G-CSF in rats 4 h after onset of ischemia. Infarct volume was determined 24 h after onset of ischemia. In the rat photothrombotic model, we applied 10 μg/kg bodyweight G-CSF daily for a period of 10 days starting either 24 or 72 h after induction of ischemia. G-CSF both decreased acute infarct volume in the MCAO model, and improved recovery in the photothrombotic model at delayed timepoints. CONCLUSION: These data further strengthen G-CSF's profile as a unique candidate stroke drug, and provide an experimental basis for application of G-CSF in the post-stroke recovery phase

    Dispelling urban myths about default uncertainty factors in chemical risk assessment - Sufficient protection against mixture effects?

    Get PDF
    © 2013 Martin et al.; licensee BioMed Central LtdThis article has been made available through the Brunel Open Access Publishing Fund.Assessing the detrimental health effects of chemicals requires the extrapolation of experimental data in animals to human populations. This is achieved by applying a default uncertainty factor of 100 to doses not found to be associated with observable effects in laboratory animals. It is commonly assumed that the toxicokinetic and toxicodynamic sub-components of this default uncertainty factor represent worst-case scenarios and that the multiplication of those components yields conservative estimates of safe levels for humans. It is sometimes claimed that this conservatism also offers adequate protection from mixture effects. By analysing the evolution of uncertainty factors from a historical perspective, we expose that the default factor and its sub-components are intended to represent adequate rather than worst-case scenarios. The intention of using assessment factors for mixture effects was abandoned thirty years ago. It is also often ignored that the conservatism (or otherwise) of uncertainty factors can only be considered in relation to a defined level of protection. A protection equivalent to an effect magnitude of 0.001-0.0001% over background incidence is generally considered acceptable. However, it is impossible to say whether this level of protection is in fact realised with the tolerable doses that are derived by employing uncertainty factors. Accordingly, it is difficult to assess whether uncertainty factors overestimate or underestimate the sensitivity differences in human populations. It is also often not appreciated that the outcome of probabilistic approaches to the multiplication of sub-factors is dependent on the choice of probability distributions. Therefore, the idea that default uncertainty factors are overly conservative worst-case scenarios which can account both for the lack of statistical power in animal experiments and protect against potential mixture effects is ill-founded. We contend that precautionary regulation should provide an incentive to generate better data and recommend adopting a pragmatic, but scientifically better founded approach to mixture risk assessment. © 2013 Martin et al.; licensee BioMed Central Ltd.Oak Foundatio

    Enhanced cosmic-ray flux toward zeta Persei inferred from laboratory study of H3+ - e- recombination rate

    Full text link
    The H3+ molecular ion plays a fundamental role in interstellar chemistry, as it initiates a network of chemical reactions that produce many interstellar molecules. In dense clouds, the H3+ abundance is understood using a simple chemical model, from which observations of H3+ yield valuable estimates of cloud path length, density, and temperature. On the other hand, observations of diffuse clouds have suggested that H3+ is considerably more abundant than expected from the chemical models. However, diffuse cloud models have been hampered by the uncertain values of three key parameters: the rate of H3+ destruction by electrons, the electron fraction, and the cosmic-ray ionisation rate. Here we report a direct experimental measurement of the H3+ destruction rate under nearly interstellar conditions. We also report the observation of H3+ in a diffuse cloud (towards zeta Persei) where the electron fraction is already known. Taken together, these results allow us to derive the value of the third uncertain model parameter: we find that the cosmic-ray ionisation rate in this sightline is forty times faster than previously assumed. If such a high cosmic-ray flux is indeed ubiquitous in diffuse clouds, the discrepancy between chemical models and the previous observations of H3+ can be resolved.Comment: 6 pages, Nature, in pres

    Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4T

    Get PDF
    Background: Myocardial infarction (MI) can be readily assessed using late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR). Inversion recovery (IR) sequences provide the highest contrast between enhanced infarct areas and healthy myocardium. Applying such methods to small animals is challenging due to rapid respiratory and cardiac rates relative to T-1 relaxation.Methods: Here we present a fast and robust protocol for assessing LGE in small animals using a multi-slice IR gradient echo sequence for efficient assessment of LGE. An additional Look-Locker sequence was used to assess the optimum inversion point on an individual basis and to determine most appropriate gating points for both rat and mouse. The technique was applied to two preclinical scenarios: i) an acute (2 hour) reperfused model of MI in rats and ii) mice 2 days following non-reperfused MI.Results: LGE images from all animals revealed clear areas of enhancement allowing for easy volume segmentation. Typical inversion times required to null healthy myocardium in rats were between 300-450 ms equivalent to 2-3 R-waves and similar to 330 ms in mice, typically 3 R-waves following inversion. Data from rats was also validated against triphenyltetrazolium chloride staining and revealed close agreement for infarct size.Conclusion: The LGE protocol presented provides a reliable method for acquiring images of high contrast and quality without excessive scan times, enabling higher throughput in experimental studies requiring reliable assessment of MI

    Environmental Health Disparities: A Framework Integrating Psychosocial and Environmental Concepts

    Get PDF
    Although it is often acknowledged that social and environmental factors interact to produce racial and ethnic environmental health disparities, it is still unclear how this occurs. Despite continued controversy, the environmental justice movement has provided some insight by suggesting that disadvantaged communities face greater likelihood of exposure to ambient hazards. The exposure–disease paradigm has long suggested that differential “vulnerability” may modify the effects of toxicants on biological systems. However, relatively little work has been done to specify whether racial and ethnic minorities may have greater vulnerability than do majority populations and, further, what these vulnerabilities may be. We suggest that psychosocial stress may be the vulnerability factor that links social conditions with environmental hazards. Psychosocial stress can lead to acute and chronic changes in the functioning of body systems (e.g., immune) and also lead directly to illness. In this article we present a multidisciplinary framework integrating these ideas. We also argue that residential segregation leads to differential experiences of community stress, exposure to pollutants, and access to community resources. When not counterbalanced by resources, stressors may lead to heightened vulnerability to environmental hazards

    The origin of dust in galaxies revisited: the mechanism determining dust content

    Full text link
    The origin of cosmic dust is a fundamental issue in planetary science. This paper revisits the origin of dust in galaxies, in particular, in the Milky Way, by using a chemical evolution model of a galaxy composed of stars, interstellar medium, metals (elements heavier than helium), and dust. We start from a review of time-evolutionary equations of the four components, and then, we present simple recipes for the stellar remnant mass and yields of metal and dust based on models of stellar nucleosynthesis and dust formation. After calibrating some model parameters with the data from the solar neighborhood, we have confirmed a shortage of the stellar dust production rate relative to the dust destruction rate by supernovae if the destruction efficiency suggested by theoretical works is correct. If the dust mass growth by material accretion in molecular clouds is active, the observed dust amount in the solar neighborhood is reproduced. We present a clear analytic explanation of the mechanism for determining dust content in galaxies after the activation of accretion growth: a balance between accretion growth and supernova destruction. Thus, the dust content is independent of the uncertainty of the stellar dust yield after the growth activation. The timing of the activation is determined by a critical metal mass fraction which depends on the growth and destruction efficiencies. The solar system formation seems to have occurred well after the activation and plenty of dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure
    corecore