8 research outputs found

    Grundlagen

    No full text

    Globularization and Domestication

    Get PDF
    This paper aims to explore a potential connection between two hypotheses recently put forward in the context of language evolution. One hypothesis argues that some human-specific change(s) in the hominin brain developmental program habilitated the neuronal workspace that enabled “cognitive modernity” to unfold, also resulting in our globularized braincase. The other argues that the cultural niche resulting from our self-domestication favored the emergence of natural languages. In this article we document numerous links between the genetic changes we have claimed may have brought about globularization and neural crest cells, which have been claimed to explain the constellation of distinctive traits (physical, cognitive, and behavioral) found in all domesticated mammals. If these links turn out to be as robust as we think they are, globularization and self-domestication may well be closely related phenomena in the context of human evolution.Preparation of this work was supported by funds from the Spanish Ministry of Economy and Competitiveness (Grants FFI2013-43823-P and FFI2014-61888-EXP), as well as funds from a Marie Curie International Reintegration Grant from the European Union (PIRG-GA-2009-256413), research funds from the Fundacio Bosch i Gimpera, and from the Generalitat de Catalunya (2014-SGR-200, and FI-grant)

    Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction

    No full text
    We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein–coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology

    Cardiovascular Activity

    No full text
    corecore