6 research outputs found

    Erosivity, rainfall coefficient and patterns and return period in Quarai, RS, Brazil

    Get PDF
    O conhecimento da potencialidade das chuvas em causar erosão é necessário para planejamento de atividades agrícolas e de engenharia civil. Para a localidade de Quaraí (RS), foram determinados a erosividade da chuva e a relação com a precipitação e o coeficiente de chuva, os padrões hidrológicos e o período de retorno das chuvas. Utilizaram-se dados pluviográficos diários do período 1966-2003. Para cada chuva erosiva, foram separados os segmentos do pluviograma com a mesma intensidade e registrados os dados em planilha. Com o programa Chuveros, foram calculadas as erosividades mensal, anual e média das chuvas pelo índice EI30, no Sistema Internacional de Unidades, e os padrões hidrológicos de chuva, bem como o coeficiente de chuva. Foram realizadas correlações de Pearson e regressões lineares simples entre o índice de erosividade EI30 e os valores médios mensais (p) e anuais (P) de precipitação e do coeficiente de chuva (Rc). Foi calculada a intensidade máxima da chuva pelo método da distribuição extrema tipo 1 para durações de chuva de 1/6, 1/3, 1/2, 1, 2, 4, 8, 12, 24 e 48 h e períodos de retorno da chuva de 2, 5, 10, 20, 50 e 100 anos. Foram ajustadas equações que relacionam a intensidade máxima e a duração da chuva para os períodos de retorno da chuva de 2, 5, 10, 20, 50 e 100 anos, pelo método de regressão linear simples, e construído o gráfico que relaciona essas características da chuva. O valor médio anual de EI30 (fator R da USLE) calculado para Quaraí foi de 9.292 MJ mm ha-1 h-1 ano-1. Obtiveram-se as equações EI30 = -754,37 + 13,50 p (r2 = 0,85) e EI30 = -47,35 + 82,72 Rc (R2 = 0,84). Em relação ao total das chuvas estudadas, 44 % do número e 90 % do volume foram erosivas. Do número total das chuvas erosivas, 51 % foram do padrão hidrológico avançado, 25 % do intermediário e 24 % do atrasado, ao passo que, do volume total das chuvas erosivas, 57 % foram do padrão avançado, 25 % do intermediário e 18 % do atrasado. Das chuvas erosivas, 57 % da erosividade correspondeu a chuvas do padrão avançado, 25 % a chuvas do padrão intermediário e 18 % a chuvas do padrão atrasado.The planning of agricultural and civil engineering activities must be based on knowledge of rainfall erosion potential. For Quarai, RS, Brazil, the rainfall erosivity and its relationship with precipitation and rainfall coefficient, rainfall patterns and rainfall return period were determined. Daily rainfall data from the 1966-2003 period were used. For each erosive rainfall the segments of the rainfall chart with the same intensity were separated and the data recorded in a worksheet. The mean precipitation and rainfall patterns were estimated, as well as the monthly and annual erosivity by the EI30 index (International System of Units), using the software Chuveros. The rainfall coefficient was calculated. Pearson correlations and linear regressions between the erosivity index EI30 and the mean annual precipitation and rainfall coefficient (Rc) were performed. The rainfall maximum intensity was calculated by the method of extreme distribution type I for different rainfall durations (1/6, 1/3, 1/2, 1, 2, 4, 8, 12, 24 and 48 h) and rainfall return periods (2, 5, 10, 20, 50 and 100 years). Equations were adjusted that relate the maximum intensity and rainfall duration to all return periods, by the method of simple linear regression, and the rainfall characteristics related in a graph. The mean annual values of EI30 (R factor of USLE) determined for Quarai, RS, Brazil, was 9,292 MJ mm ha-1 h-1 year-1. The following equations were obtained: EI30 = -754.37 + 13.50 p (r2 = 0.85) and EI30 = -47.35 + 82.72 Rc (r2 = 0.84). In relation to the total precipitation studied, 44 % of the number of rainfalls and 90 % of the volume were erosive. Of the total rainfalls evaluated, 44 % of the number and 90 % of the volume were erosive. Of the total erosive rainfall events, 51 % had an advanced, 25 % had an intermediate, and 24 % had a delayed hydrological pattern. Of the total volume of erosive rainfalls, 57 % showed and advanced pattern, 25 % intermediate, and 18 % a delayed pattern

    Erosivity and hydrological characteristics of ainfalls in Rio Grande (RS, Brazil)

    No full text
    As características específicas das chuvas variam entre regiões, e o conhecimento da sua potencialidade em causar erosão é necessário para planejar atividades agrícolas e de engenharia civil. Para a localidade de Rio Grande (RS), foi determinada a erosividade e sua relação com a precipitação e o coeficiente de chuva, os padrões hidrológicos e o período de retorno das chuvas. Utilizaram-se dados pluviográficos de 23 anos de Rio Grande. Para cada chuva erosiva, foram separados os segmentos do pluviograma com a mesma intensidade e registrados os dados em planilha. Com o programa Chuveros foram calculados a erosividade mensal, anual e média pelo índice EI30 no Sistema Internacional de Unidades e os padrões hidrológicos das chuvas. Os valores médios mensais da precipitação e do índice de erosividade foram expressos como percentagens do valor médio anual da precipitação e do índice de erosividade, respectivamente, a fim de obter a curva de distribuição acumulada da precipitação e do índice de erosividade em função do tempo. O coeficiente de chuva (Rc) foi calculado. Foram realizadas correlações de Pearson e regressões lineares simples entre o índice de erosividade EI30 e os valores médios anuais de precipitação e de coeficiente de chuva. O período de retorno foi calculado para 2, 5, 10, 20, 50 e 100 anos. O valor médio anual da erosividade das chuvas com base no índice EI30 para o Rio Grande foi de 5.135 MJ mm ha-1 h-1, valor que representa o Fator “R” da Equação Universal de Perdas de Solo (USLE). As equações de regressão entre EI30 e precipitação e coeficiente de chuva não foram significativas. Em relação ao total das chuvas, 32,6 % do número e 99,3 % do volume foram erosivos. Do número total das chuvas erosivas, 45,6 % foram do padrão hidrológico avançado, 25,6 % do intermediário e 28,7 % do atrasado, ao passo que, do volume total das chuvas erosivas, 47,8 % foram do padrão avançado, 28,0 % do intermediário e 24,2 % do atrasado. Da erosividade anual, 49,1 % correspondeu a chuvas do padrão avançado, 28,9 % a chuvas do padrão intermediário e 22,1 % a chuvas do padrão atrasado. O método da distribuição extrema tipo I foi adequado para obter as curvas de intensidade-duraçãofrequência. Os períodos de retorno da chuva podem ser calculados por meio das equações, utilizando os valores dos parâmetros encontrados, ou pelos gráficos das curvas de intensidade-duração-frequência.Specific rainfall characteristics vary among regions and their erosion potential must be known for the planning of agricultural and civil engineering activities. For Rio Grande (RS, Brazil), the erosivity and relationships with the precipitation and rainfall coefficient, rainfall hydrologic patterns and return period were determined based on rainfall data of 23 years. For each erosive rainfall the segments of the rainfall chart with the same intensity were separated together and the data registered in worksheets. The mean monthly and annual rainfall erosivity, the EI30 index in the International System of Units and the rainfall patterns were estimated using software Chuveros. The mean monthly values of precipitation and erosivity index were expressed as percentage of the mean annual values of these variables, resulting in the curve of accumulated distribution of precipitation and erosivity index in function of time. The rainfall coefficient (Rc) was calculated. Pearson correlations and linear regressions between the erosivity index EI30 and the mean annual values of precipitation and rainfall coefficient were calculated. The rainfall return period was calculated for 2, 5, 10, 20, 50, and 100 years. The mean annual value of EI30 was 5135 MJ mm ha-1 h-1, which is to be used as “R” Factor in the Universal Soil Loss Equation (USLE) for Rio Grande and surrounding regions with similar climatic conditions. The regression equations for EI30 and precipitation and rainfall coefficient were not significant. Regarding the total rainfalls studied, it was found that 32.6 % of the rainfalls and 99.3 % of the rain volume were erosive. From the total number of erosive rainfalls, 45.6 % had an advanced hydrologic pattern, 25.6 % an intermediary and 28.7 % a delayed pattern, while for the total volume of erosive rainfalls, 47.8 % had an advanced hydrologic pattern, 28.0 % an intermediary and 24.2 % a delayed pattern. In terms of annual erosivity, 49.1 % corresponded to rainfalls with an advanced, 28.9 % an intermediary and 22.1 % to a delayed pattern. The method of extreme distribution type I was adequate to obtain intensity-duration-frequency curves. Rainfall return periods can be calculated by the equations using the values of the parameters found, or by the graphs of intensity-duration-frequency

    Erosivity, rainfall coefficient and patterns and return period in Quarai, RS, Brazil

    Get PDF
    O conhecimento da potencialidade das chuvas em causar erosão é necessário para planejamento de atividades agrícolas e de engenharia civil. Para a localidade de Quaraí (RS), foram determinados a erosividade da chuva e a relação com a precipitação e o coeficiente de chuva, os padrões hidrológicos e o período de retorno das chuvas. Utilizaram-se dados pluviográficos diários do período 1966-2003. Para cada chuva erosiva, foram separados os segmentos do pluviograma com a mesma intensidade e registrados os dados em planilha. Com o programa Chuveros, foram calculadas as erosividades mensal, anual e média das chuvas pelo índice EI30, no Sistema Internacional de Unidades, e os padrões hidrológicos de chuva, bem como o coeficiente de chuva. Foram realizadas correlações de Pearson e regressões lineares simples entre o índice de erosividade EI30 e os valores médios mensais (p) e anuais (P) de precipitação e do coeficiente de chuva (Rc). Foi calculada a intensidade máxima da chuva pelo método da distribuição extrema tipo 1 para durações de chuva de 1/6, 1/3, 1/2, 1, 2, 4, 8, 12, 24 e 48 h e períodos de retorno da chuva de 2, 5, 10, 20, 50 e 100 anos. Foram ajustadas equações que relacionam a intensidade máxima e a duração da chuva para os períodos de retorno da chuva de 2, 5, 10, 20, 50 e 100 anos, pelo método de regressão linear simples, e construído o gráfico que relaciona essas características da chuva. O valor médio anual de EI30 (fator R da USLE) calculado para Quaraí foi de 9.292 MJ mm ha-1 h-1 ano-1. Obtiveram-se as equações EI30 = -754,37 + 13,50 p (r2 = 0,85) e EI30 = -47,35 + 82,72 Rc (R2 = 0,84). Em relação ao total das chuvas estudadas, 44 % do número e 90 % do volume foram erosivas. Do número total das chuvas erosivas, 51 % foram do padrão hidrológico avançado, 25 % do intermediário e 24 % do atrasado, ao passo que, do volume total das chuvas erosivas, 57 % foram do padrão avançado, 25 % do intermediário e 18 % do atrasado. Das chuvas erosivas, 57 % da erosividade correspondeu a chuvas do padrão avançado, 25 % a chuvas do padrão intermediário e 18 % a chuvas do padrão atrasado.The planning of agricultural and civil engineering activities must be based on knowledge of rainfall erosion potential. For Quarai, RS, Brazil, the rainfall erosivity and its relationship with precipitation and rainfall coefficient, rainfall patterns and rainfall return period were determined. Daily rainfall data from the 1966-2003 period were used. For each erosive rainfall the segments of the rainfall chart with the same intensity were separated and the data recorded in a worksheet. The mean precipitation and rainfall patterns were estimated, as well as the monthly and annual erosivity by the EI30 index (International System of Units), using the software Chuveros. The rainfall coefficient was calculated. Pearson correlations and linear regressions between the erosivity index EI30 and the mean annual precipitation and rainfall coefficient (Rc) were performed. The rainfall maximum intensity was calculated by the method of extreme distribution type I for different rainfall durations (1/6, 1/3, 1/2, 1, 2, 4, 8, 12, 24 and 48 h) and rainfall return periods (2, 5, 10, 20, 50 and 100 years). Equations were adjusted that relate the maximum intensity and rainfall duration to all return periods, by the method of simple linear regression, and the rainfall characteristics related in a graph. The mean annual values of EI30 (R factor of USLE) determined for Quarai, RS, Brazil, was 9,292 MJ mm ha-1 h-1 year-1. The following equations were obtained: EI30 = -754.37 + 13.50 p (r2 = 0.85) and EI30 = -47.35 + 82.72 Rc (r2 = 0.84). In relation to the total precipitation studied, 44 % of the number of rainfalls and 90 % of the volume were erosive. Of the total rainfalls evaluated, 44 % of the number and 90 % of the volume were erosive. Of the total erosive rainfall events, 51 % had an advanced, 25 % had an intermediate, and 24 % had a delayed hydrological pattern. Of the total volume of erosive rainfalls, 57 % showed and advanced pattern, 25 % intermediate, and 18 % a delayed pattern

    Erosivity and hydrological characteristics of ainfalls in Rio Grande (RS, Brazil)

    No full text
    As características específicas das chuvas variam entre regiões, e o conhecimento da sua potencialidade em causar erosão é necessário para planejar atividades agrícolas e de engenharia civil. Para a localidade de Rio Grande (RS), foi determinada a erosividade e sua relação com a precipitação e o coeficiente de chuva, os padrões hidrológicos e o período de retorno das chuvas. Utilizaram-se dados pluviográficos de 23 anos de Rio Grande. Para cada chuva erosiva, foram separados os segmentos do pluviograma com a mesma intensidade e registrados os dados em planilha. Com o programa Chuveros foram calculados a erosividade mensal, anual e média pelo índice EI30 no Sistema Internacional de Unidades e os padrões hidrológicos das chuvas. Os valores médios mensais da precipitação e do índice de erosividade foram expressos como percentagens do valor médio anual da precipitação e do índice de erosividade, respectivamente, a fim de obter a curva de distribuição acumulada da precipitação e do índice de erosividade em função do tempo. O coeficiente de chuva (Rc) foi calculado. Foram realizadas correlações de Pearson e regressões lineares simples entre o índice de erosividade EI30 e os valores médios anuais de precipitação e de coeficiente de chuva. O período de retorno foi calculado para 2, 5, 10, 20, 50 e 100 anos. O valor médio anual da erosividade das chuvas com base no índice EI30 para o Rio Grande foi de 5.135 MJ mm ha-1 h-1, valor que representa o Fator “R” da Equação Universal de Perdas de Solo (USLE). As equações de regressão entre EI30 e precipitação e coeficiente de chuva não foram significativas. Em relação ao total das chuvas, 32,6 % do número e 99,3 % do volume foram erosivos. Do número total das chuvas erosivas, 45,6 % foram do padrão hidrológico avançado, 25,6 % do intermediário e 28,7 % do atrasado, ao passo que, do volume total das chuvas erosivas, 47,8 % foram do padrão avançado, 28,0 % do intermediário e 24,2 % do atrasado. Da erosividade anual, 49,1 % correspondeu a chuvas do padrão avançado, 28,9 % a chuvas do padrão intermediário e 22,1 % a chuvas do padrão atrasado. O método da distribuição extrema tipo I foi adequado para obter as curvas de intensidade-duraçãofrequência. Os períodos de retorno da chuva podem ser calculados por meio das equações, utilizando os valores dos parâmetros encontrados, ou pelos gráficos das curvas de intensidade-duração-frequência.Specific rainfall characteristics vary among regions and their erosion potential must be known for the planning of agricultural and civil engineering activities. For Rio Grande (RS, Brazil), the erosivity and relationships with the precipitation and rainfall coefficient, rainfall hydrologic patterns and return period were determined based on rainfall data of 23 years. For each erosive rainfall the segments of the rainfall chart with the same intensity were separated together and the data registered in worksheets. The mean monthly and annual rainfall erosivity, the EI30 index in the International System of Units and the rainfall patterns were estimated using software Chuveros. The mean monthly values of precipitation and erosivity index were expressed as percentage of the mean annual values of these variables, resulting in the curve of accumulated distribution of precipitation and erosivity index in function of time. The rainfall coefficient (Rc) was calculated. Pearson correlations and linear regressions between the erosivity index EI30 and the mean annual values of precipitation and rainfall coefficient were calculated. The rainfall return period was calculated for 2, 5, 10, 20, 50, and 100 years. The mean annual value of EI30 was 5135 MJ mm ha-1 h-1, which is to be used as “R” Factor in the Universal Soil Loss Equation (USLE) for Rio Grande and surrounding regions with similar climatic conditions. The regression equations for EI30 and precipitation and rainfall coefficient were not significant. Regarding the total rainfalls studied, it was found that 32.6 % of the rainfalls and 99.3 % of the rain volume were erosive. From the total number of erosive rainfalls, 45.6 % had an advanced hydrologic pattern, 25.6 % an intermediary and 28.7 % a delayed pattern, while for the total volume of erosive rainfalls, 47.8 % had an advanced hydrologic pattern, 28.0 % an intermediary and 24.2 % a delayed pattern. In terms of annual erosivity, 49.1 % corresponded to rainfalls with an advanced, 28.9 % an intermediary and 22.1 % to a delayed pattern. The method of extreme distribution type I was adequate to obtain intensity-duration-frequency curves. Rainfall return periods can be calculated by the equations using the values of the parameters found, or by the graphs of intensity-duration-frequency
    corecore