16 research outputs found

    High resolution spectral-domain optical coherence tomography at 1.3 micron center wavelength using a broadband superluminescent diode light source

    No full text
    International audienceWe present an ultrahigh resolution spectral-domain optical coherence tomography imaging system using a broadband superluminescent diode light source emitting at a center wavelength of 1.3 mm. The light source consists of two spectrally shifted superluminescent diodes that are coupled together into a single mode fiber. The effective emission power spectrum has a full width at half maximum of 200 nm and the source output power is 10 mW. The imaging system has an axial resolution of 3.9 µm in air (3.0 µm in biological tissue), and a lateral resolution of 6.5 µm. The sensitivity and the maximum line rate are 95 dB and 46 kHz, respectively. Images of an infrared viewing card and a cornea from human eye suffering from glaucoma showing Schlemm's canal are presented to illustrate the performance of the system

    Development of optical coherence tomography for monitoring the glaucoma laser surgery

    No full text
    La capacité de la tomographie par cohérence optique (OCT) à délivrer des images tomographiques de tissus biologiques in vivo, de manière non invasive et en temps réel, a suscité un intérêt croissant pour de nombreuses applications biomédicales, principalement en ophtalmologie pour l’imagerie de la rétine et du segment antérieur de l’œil. Toutefois, pour l’imagerie à haute résolution de tissus biologiques fortement diffusants, comme la sclérotique et la cornée œdémateuse, la technique nécessitait des améliorations technologiques. Dans cette thèse, un système d’OCT « Fourier-domain » (FD-OCT) à très haute résolution spatiale (< 4 µm), à la longueur d’onde de 1,3 µm, a été développé dans la Laboratoire Charles Fabry – Institute d’Optique Graduate School. Avec ce système original, nous avons réussi, pour la première fois, à visualiser correctement le canal de Schlemm de l’œil humain qui se trouve à une profondeur d’environ 0,8 mm dans le limbe de la cornée, milieu fortement diffusant. L’imagerie du canal de Schlemm est capitale afin d’envisager la chirurgie par laser du glaucome, qui consiste à inciser cette partie de l’œil afin d’améliorer l’écoulement de l’humeur aqueuse. Par ailleurs, en collaboration avec le Laboratoire d’Optique Appliquée de l’ENSTA ParisTech, nous avons démontré la possibilité de contrôler en temps réel par OCT des découpes par laser femtoseconde pratiquées dans la cornée humaine in vitro. Ces travaux ont montré que l’opération du Glaucome par laser femtoseconde, contrôlée par OCT, devrait être possible.The ability of optical coherence tomography (OCT) to deliver tomographic images of biological tissues in vivo non-invasively and in real-time has been a growing interest in many biomedical applications, mainly in ophthalmology for imaging the retina and the anterior segment of the eye. However, developing high-resolution OCT for imaging strongly scattering biological tissues like sclera and edematous cornea has still been the main challenge. In this PhD work, an ultrahigh-resolution (< 4 µm) Fourier-domain OCT (FD-OCT) system optimized at 1.3 µm center wavelength was developed in Laboratoire Charles Fabry – Institut d’Optique Graduate School. Using this OCT system, we have, for the first time, properly visualized the Schlemm’s canal of the human eye that is located in the strongly scattering corneal limbus at depth of ~ 0.8 mm. Schlemm’s canal has been our target for OCT imaging because it plays an important role for the management of the aqueous humor that is responsible for causing glaucoma - an eye disease that can potentially lead to blindness. In collaboration with Laboratoire d’Optique Appliquée at ENSTA ParisTech, we have also demonstrated real-time OCT imaging of the femtosecond laser surgery in excised human cornea. These studies have thus shown that the surgery of glaucoma by femtosecond laser, monitored by OCT, would be possible

    Tomographie par cohérence optique pour la chirurgie laser du glaucome

    No full text
    The ability of optical coherence tomography (OCT) to deliver tomographic images of biological tissues in vivo non-invasively and in real-time has been a growing interest in many biomedical applications, mainly in ophthalmology for imaging the retina and the anterior segment of the eye. However, developing high-resolution OCT for imaging strongly scattering biological tissues like sclera and edematous cornea has still been the main challenge. In this PhD work, an ultrahigh-resolution (< 4 µm) Fourier-domain OCT (FD-OCT) system optimized at 1.3 µm center wavelength was developed in Laboratoire Charles Fabry – Institut d’Optique Graduate School. Using this OCT system, we have, for the first time, properly visualized the Schlemm’s canal of the human eye that is located in the strongly scattering corneal limbus at depth of ~ 0.8 mm. Schlemm’s canal has been our target for OCT imaging because it plays an important role for the management of the aqueous humor that is responsible for causing glaucoma - an eye disease that can potentially lead to blindness. In collaboration with Laboratoire d’Optique Appliquée at ENSTA ParisTech, we have also demonstrated real-time OCT imaging of the femtosecond laser surgery in excised human cornea. These studies have thus shown that the surgery of glaucoma by femtosecond laser, monitored by OCT, would be possible.La capacité de la tomographie par cohérence optique (OCT) à délivrer des images tomographiques de tissus biologiques in vivo, de manière non invasive et en temps réel, a suscité un intérêt croissant pour de nombreuses applications biomédicales, principalement en ophtalmologie pour l’imagerie de la rétine et du segment antérieur de l’œil. Toutefois, pour l’imagerie à haute résolution de tissus biologiques fortement diffusants, comme la sclérotique et la cornée œdémateuse, la technique nécessitait des améliorations technologiques. Dans cette thèse, un système d’OCT « Fourier-domain » (FD-OCT) à très haute résolution spatiale (< 4 µm), à la longueur d’onde de 1,3 µm, a été développé dans la Laboratoire Charles Fabry – Institute d’Optique Graduate School. Avec ce système original, nous avons réussi, pour la première fois, à visualiser correctement le canal de Schlemm de l’œil humain qui se trouve à une profondeur d’environ 0,8 mm dans le limbe de la cornée, milieu fortement diffusant. L’imagerie du canal de Schlemm est capitale afin d’envisager la chirurgie par laser du glaucome, qui consiste à inciser cette partie de l’œil afin d’améliorer l’écoulement de l’humeur aqueuse. Par ailleurs, en collaboration avec le Laboratoire d’Optique Appliquée de l’ENSTA ParisTech, nous avons démontré la possibilité de contrôler en temps réel par OCT des découpes par laser femtoseconde pratiquées dans la cornée humaine in vitro. Ces travaux ont montré que l’opération du Glaucome par laser femtoseconde, contrôlée par OCT, devrait être possible

    Imaging the Schlemm’s Canal using an ultra-high resolution spectral-domain OCT working at 1.3µm center wavelength (Orale)

    No full text
    International audienceWe present an ultrahigh resolution spectral-domain optical coherence tomography imaging system using a broadband superluminescent diode light source emitting at a center wavelength of 1.3µm. The light source consists of two spectrally shifted superluminescent diodes that are coupled together into a single mode fiber. The effective emission power spectrum has a full width at half maximum of 200nm and the source output power is 10 mW. The imaging system has an axial resolution of 3.9µm in air (~3.0µm in biological tissue), and a lateral resolution of 6.5µm.Thesensitivity and the maximum line rate are 95 dB and 46 kHz, respectively. Images of an infrared viewing card and a cornea from human eye suffering from glaucoma showing Schlemm’s canal are presented to illustrate the performance of the system

    Brain Epileptic Seizure Detection Using Joint CNN and Exhaustive Feature Selection With RNN-BLSTM Classifier

    No full text
    Brain Epilepsy seizure is a critical disorder, which is an uncontrolled burst of electrical activity of brain. The early detection of brain seizure can save the life of humans. The electroencephalogram (EEG) signals may be used to automatically identify brain seizures, which is one of the most prominent solutions for this issue. However, the conventional methods are failed to classify the brain seizure effectively. So, this work implemented the Brain Epilepsy Seizure-Detection-Network (BESD-Net) using deep learning, recurrent learning properties. Initially, the dataset pre-processing is performed, which eliminates the noise, unwanted data from EEG dataset. Then, the deep learning based customized convolution neural network (CCNN) is trained on the pre-processed EEG data for precise extraction of disease correlated features. The machine learning based exhaustive random forest (ERF) feature selection is used to optimize the features obtained from the CCNN, which are highly correlated with disease dependent properties. In conclusion, the recurrent neural network (RNN) based bi-directional long short-term memory (BLSTM) is used in order to detect brain seizures from the chosen ERF features. Training and testing of suggested methodology had made use of CHB-MIT Scalp EEG Database. The aforementioned model has achieved the values of 98.36&#x0025;, 97.54&#x0025;, 97.91&#x0025;, 98&#x0025; and 95.08&#x0025; respectively for precision, sensitivity, F1-Score, accuracy and specificity. The findings of the simulations demonstrate that the suggested BESD-Net led to superior performance when compared to the technologies that are already in use
    corecore