439 research outputs found

    High-temperature LM cathode ion thrusters Quarterly progress report, 5 Aug. - 4 Nov. 1968

    Get PDF
    Thermodynamic and operating characteristics of high temperature liquid mercury cathode ion thruster

    Arc termination cracks in Inconel 718 and Incoloy 903

    Get PDF
    The welding of the nickel base, heat resistant alloys that are used extensively for welded Shuttle engine components revealed solidification cracking characteristics at weld termination points. If not detected and removed, these crater cracks may cause costly component failure. To better understand this characteristic, welding termination techniques were studied and methods developed to eliminate crater cracks. It was determined that weld termination solidification cracking can be eliminated by controlled decrease of welding current, welding voltage, wire feed, and travel speed

    Weld peaking on heavy aluminum structures

    Get PDF
    Weld peaking is usually undesirable in any welded structure. In heavy structures, the forces involved in the welding process become very large and difficult to handle. With the shuttle's solid rocket booster, the weld peaking resulted in two major problems: (1) reduced mechanical properties across the weld joint, and (2) fit-up difficulties in subsequent assembly operation. Peaking from the weld shrinkage forces can be fairly well predicted in simple structures; however, in welding complicated assemblies, the amount of peaking is unpredictable because of unknown stresses from machining and forming, stresses induced by the fixturing, and stresses from welds in other parts of the assembly. When excessive peaking is encountered, it can be corrected using the shrinkage forces resulting from the welding process. Application of these forces is discussed in this report

    LM cathode thruster system Quarterly progress report, 4 Jan. 1969 - 4 Apr. 1970

    Get PDF
    Development of 20 cm liquid metal cathode thruster syste

    High voltage solar array study Final report

    Get PDF
    High voltage solar array stud

    LM cathode thruster system Quarterly progress report, 4 Oct. 1969 - 4 Jan. 1970

    Get PDF
    Optimization testing of thermally integrated liquid mercury cathode thruster syste

    The Structure Of The Accretion Disk In The ADC Source 4U 1822-371

    Get PDF
    The low-mass X-ray binary (LMXB) 4U 1822-371 has an accretion disk corona (ADC) that scatters X-ray photons from the inner disk and neutron star out of the line of sight. It has a high orbital inclination and the secondary star eclipses the disk and ADC. We have obtained new time-resolved UV spectrograms and V- and I-band photometry of 4U 1822-371. The large quadratic term in our new optical eclipse ephemeris confirms that the system has an extremely high rate of mass transfer and mass accretion. The C IV lambda lambda = 1548 - 1550 angstrom emission line has a half width of similar to 4400 km/s, indicating a strong, high velocity wind is being driven off the accretion disk. Near the disk the wind is optically thick in UV, V, and J and the eclipse analysis shows that in V and J the optically thick wind extends nearly to the outer edge of the disk. The ADC must also extend vertically to a height equal to approximately half the disk radius.Astronom

    2MASS J05162881+2607387: A New Low-Mass Double-Lined Eclipsing Binary

    Full text link
    We show that the star known as 2MASS J05162881+2607387 (hereafter J0516) is a double-lined eclipsing binary with nearly identical low-mass components. The spectroscopic elements derived from 18 spectra obtained with the High Resolution Spectrograph on the Hobby-Eberly Telescope during the Fall of 2005 are K_1=88.45 +/- 0.48 km/s and K_2=90.43 +/- 0.60 km/s, resulting in a mass ratio of$q=K_1/K_2 = 0.978 +/- 0.018 and minimum masses of M_1 sin^{3}i=0.775 +/- 0.016 solar masses and M_2 sin^{3}i=0.759 +/- 0.012 solar masses, respectively. We have extensive differential photometry of J0516 obtained over several nights between 2004 January-March (epoch 1) and 2004 October-2005 January plus 2006 January (epoch 2) using the 1m telescope at the Mount Laguna Observatory. The source was roughly 0.1 mag brighter in all three bandpasses during epoch 1 when compared to epoch 2. Also, phased light curves from epoch 1 show considerable out-of-eclipse variability, presumably due to bright spots on one or both stars. In contrast, the phased light curves from epoch 2 show little out-of-eclipse variability. The light curves from epoch 2 and the radial velocity curves were analyzed using our ELC code with updated model atmospheres for low-mass stars. We find the following: M_1=0.787 +/- 0.012 solar masses, R_1=0.788 +/- 0.015 solar radii, M_2=0.770 +/- 0.009 solar masses, and R_2=0.817 +/- 0.010 solar radii. The stars in J0516 have radii that are significantly larger than model predictions for their masses, similar to what is seen in a handful of other well-studied low-mass double-lined eclipsing binaries. We compiled all recent mass and radius determinations from low-mass binaries and determine an empirical mass-radius relation of the form R = 0.0324 + 0.9343M + 0.0374M^2, where the quantities are in solar units.Comment: 16 pages, 10 figures (Figure 1 has degraded quality), to appear in Ap

    Vehicle Systems Panel deliberations

    Get PDF
    The Vehicle Systems Panel addressed materials and structures technology issues related to launch and space vehicle systems not directly associated with the propulsion or entry systems. The Vehicle Systems Panel was comprised of two subpanels - Expendable Launch Vehicles & Cryotanks (ELVC) and Reusable Vehicles (RV). Tom Bales, LaRC, and Tom Modlin, JSC, chaired the expendable and reusable vehicles subpanels, respectively, and co-chaired the Vehicle Systems Panel. The following four papers are discussed in this section: (1) Net Section components for Weldalite Cryogenic Tanks, by Don Bolstad; (2) Build-up Structures for Cryogenic Tanks and Dry Bay Structural Applications, by Barry Lisagor; (3) Composite Materials Program, by Robert Van Siclen; (4) Shuttle Technology (and M&S Lessons Learned), by Stan Greenberg

    The effect of IGFC warm gas cleanup system conditions on the gas-solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes

    Get PDF
    The U.S. Department of Energy is currently working on coupling coal gasification and high temperature fuel cell to produce electrical power in a highly efficient manner while being emissions free. Many investigations have already investigated the effects of major coal syngas species such as CO and H2S. However coal contains many trace species and the effect of these species on solid oxide fuel cell anode is not presently known. Warm gas cleanup systems are planned to be used with these advanced power generation systems for the removal of major constituents such as H2S and HCl but the operational parameters of such systems is not well defined at this point in time. This paper focuses on the effect of anticipated warm gas cleanup conditions has on trace specie partitioning between the vapor and condensed phase and the effects the trace vapor species have on the SOFC anode. Results show that Be, Cr, K, Na, V, and Z trace species will form condensed phases and should not effect SOFC anode performance since it is anticipated that the warm gas cleanup systems will have a high removal efficiency of particulate matter. Also the results show that Sb, As, Cd, Hg, Pb, P, and Se trace species form vapor phases and the Sb, As, and P vapor phase species show the ability to form secondary Ni phases in the SOFC anode
    • …
    corecore