75 research outputs found

    Rocamadour – Grotte Sirogne

    Get PDF
    La grotte Sirogne est située au lieu-dit Merle sur la commune de Rocamadour. Elle s’ouvre sur la bordure sud d’un promontoire situé sur la rive droite de l’Alzou et fait partie du complexe karstique de Sirogne formé au Jurassique (Bruxelles et Astruc 2009). Cette grotte, composée d’une cavité principale et de trois diverticules, pourrait être la Crozo del Dua, fouillée par A. Niederlander dans la première moitié du xxe s. et pour laquelle nous ne possédons aucune archive de terrain. Ce site a..

    Rocamadour – Grotte Sirogne

    Get PDF
    Lien Atlas (MCC) :http://atlas.patrimoines.culture.fr/atlas/trunk/index.php?ap_theme=DOM_2.01.02&ap_bbox=1.559;44.781;1.694;44.859 Alors que les territoires adjacents ont livré de nombreux restes néandertaliens, peu de découvertes ont été réalisées jusqu'à présent dans les Causses du Quercy. Après la découverte par David Mancel d'une hémi-mandibule humaine dans un ramassage d'ossements lors de la prospection spéléologique d'une cavité de la commune de Rocamadour, nous avons organisé une premi..

    Microevolution of outer and inner structures of upper molars in Late Pleistocene and Early Holocene humans

    Get PDF
    In this study, we investigate outer and inner variations of upper second molars (UM2) for Late Pleistocene and Early Holocene modern humans, at a key-period in our evolutionary history associated with major sociocultural, economic and environmental changes. Non-metric traits have been recorded on 89 UM2 of 66 Upper Paleolithic, Mesolithic and Neolithic individuals, and 40 UM2 have been microscanned to assess variations in enamel thickness (ET) distribution and enamel-dentine junction (EDJ) shape. Major changes are found between Mesolithic and Neolithic periods: a decrease of the metacone expression combined with an increase of the hypocone development; an increase of the heterogeneity of ET distribution between lingual and buccal cusps; and an increase of the development of the dentine horn tips corresponding to the hypocone and, to a lesser extent, to the metacone. These morphological modifications could be linked to the masticatory functional changes associated with the transition to agriculture

    3D models related to the publication: Internal tooth structure and burial practices: insights into the Neolithic necropolis of Gurgy (France, 5100-4000 cal. BC)

    Get PDF
    The present 3D Dataset contains the 3D models of external and internal aspects of human upper permanent second molars from the Neolithic necropolis analyzed in the following publication: Le Luyer M., Coquerelle M., Rottier S., Bayle P.: Internal tooth structure and burial practices: insights into the Neolithic necropolis of Gurgy (France, 5100-4000 cal. BC)

    Is the deciduous/permanent molar enamel thickness ratio a taxon-specific indicator in extant and extinct hominids?

    Get PDF
    In Primates, enamel thickness variation stems from an evolutionary interplay between functional/adaptive constraints (ecology) and the strict control mechanisms of the morphogenetic program. Most studies on primate enamel thickness have primarily considered the permanent teeth, while the extent of covariation in tooth enamel thickness distribution between deciduous and permanent counterparts remains poorly investigated. In this test study on nine extant and fossil hominids we investigated the degree of covariation in enamel proportions between 25 pairs of mandibular dm2 and M1 by a so-called “lateral enamel thickness diphyodontic index”. The results did not provide an unambiguous picture, but rather suggest complex patterns likely resulting from the influence of many interactive factors. Future research should test the congruence of the “diphyodontic signal” between the anterior and the postcanine dentition, as well as between enamel and the enamel-dentine junction topography

    Evaluation of age, sex, and ancestry-related variation in cortical bone and dentine volumes in modern humans, and a preliminary assessment of cortical bone-dentine covariation in later Homo.

    Get PDF
    Cortical bone and dentine share similarities in their embryological origin, development, and genetic background. Few analyses have combined the study of cortical bone and dentine to quantify their covariation relative to endogenous and exogenous factors. However, knowing how these tissues relate in individuals is of great importance to decipher the factors acting on their evolution, and ultimately to understand the mechanisms responsible for the different patterns of tissue proportions shown in hominins. The aims of this study are to examine age-, sex-, and ancestry-related variation in cortical bone and dentine volumes, and to preliminary assess the possible covariation between these tissues in modern humans and in five composite Neandertals. The modern analytical sample includes 12 immature individuals from France and 49 adults from France and South Africa. Three-dimensional tissue proportions were assessed from microtomographic records of radii and permanent maxillary canines. Results suggest ontogenic differences and a strong sexual dimorphism in cortical bone and dentine developments. The developmental pattern of dentine also seems to vary according to individual's ancestry. We measure a stronger covariation signal between cortical bone and dentine volumes than with any other dental tissue. A more complex covariation pattern is shown when splitting the modern sample by age, sex, and ancestry, as no signal is found in some subsamples while others show a covariation between cortical bone and either crown or radicular dentine. Finally, no difference in cortical bone volume is noticed between the modern young adults and the five young adult composite Neandertals from Marine Isotopic Stages (MIS) 5 and 3. Greater dentine Cortical bone and dentine (co)variation volumes are measured in the MIS 5 chimeric Neandertals whereas a strong interpopulation variation in dentine thickness is noticed in the MIS 3 chimeric Neandertals. Further research on the cortical bonedentine covariation will increase understanding of the impact of endogenous and exogenous factors on the development of the mineralized tissues

    A Neanderthal from the Central Western Zagros, Iran. Structural reassessment of the Wezmeh 1 maxillary premolar

    Get PDF
    Wezmeh Cave, in the Kermanshah region of Central Western Zagros, Iran, produced a Late Pleistocene faunal assemblage rich in carnivorans along with a human right maxillary premolar, Wezmeh 1, an unerupted tooth from an 8 ± 2 year-old individual. Uranium-series analyses of the fauna by alpha spectrometry provided age estimates between 70 and 11 ka. Crown dimensions place the tooth specimen at the upper limits of Late Pleistocene human ranges of variation. Wezmeh 1 metameric position (most likely a P3) remains uncertain and only its surficial morphology has been described so far. Accordingly, we used micro-focus X-ray tomography (12.5 μm isotropic voxel size) to reassess the metameric position and taxonomic attribution of this specimen. We investigated its endostructural features and quantified crown tissue proportions. Topographic maps of enamel thickness (ET) distribution were also generated, and semilandmark-based geometric morphometric analyses of the enamel-dentine junction (EDJ) were performed. We compared Wezmeh 1 with unworn/slightly-moderately worn P3 and P4 of European Neanderthals, Middle Paleolithic modern humans from Qafzeh, an Upper Paleolithic premolar, and Holocene humans. The results confirm that Wezmeh 1 represents a P3. Based on its internal conformation and especially EDJ shape, Wezmeh 1 aligns closely with Neanderthals and is distinct from the fossil and extant modern human pattern of our comparative samples. Wezmeh 1 is thus the first direct evidence of Neanderthal presence on the western margin of the Iranian Plateau

    Les vestiges humains gravettiens dans le Sud-Ouest de la France : bilan du projet Gravett’os

    Get PDF
    Cette communication présente les principaux résultats du projet Gravett’Os, qui porte sur du matériel anthropologique du Sud-Ouest de la France (découvertes récentes et reprises des collections anciennes) associé au Gravettien (34-24 000 cal BP). Ce projet a permis l’identification de 32 individus provenant de 5 sites (Cussac, Fournol, Gargas, Abri Pataud, Cro-Magnon). Nos études confortent les analyses précédentes sur les comportements au Gravettien : extrême mobilité et division sexuelle du..

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants
    • …
    corecore