30 research outputs found

    An improved, scalable synthesis of Notum inhibitor LP-922056 using 1-chloro-1,2-benziodoxol-3-one as a superior electrophilic chlorinating agent

    Get PDF
    Background: The carboxylesterase Notum has been shown to act as a key negative regulator of the Wnt signalling pathway by mediating the depalmitoleoylation of Wnt proteins. LP-922056 (1) is an orally active inhibitor of Notum. We are investigating the role of Notum in modulating Wnt signalling in the central nervous system and wished to establish if 1 would serve as a peripherally restricted control. An accessible and improved synthetic route would allow 1 to become more readily available as a chemical tool to explore the fundamental biology of Notum and build target validation to underpin new drug discovery programs. / Results: An improved, scalable synthesis of 1 is reported. Key modifications include: (1) the introduction of the C7-cyclopropyl group was most effectively achieved with a Suzuki–Miyaura cross-coupling reaction with MIDA-boronate 11 (5 → 6); and (2) C6 chlorination was performed with 1-chloro-1,2-benziodoxol-3-one (12) (6 → 7) as a mild selective electrophilic chlorination agent. This 7-step route has been reliably performed on large scale to produce multigram quantities of 1 in good efficiency and high purity. Pharmacokinetic studies in mouse showed CNS penetration of 1 is very low with brain:plasma concentration ratio of just 0.01. A small library of amides 17 were prepared from acid 1 to explore if 1 could be modified to deliver a CNS penetrant tool by capping off the acid as an amide. Although significant Notum inhibition activity could be achieved, none of these amides demonstrated the required combination of metabolic stability along with cell permeability without evidence of P-gp mediated efflux. / Conclusion: Mouse pharmacokinetic studies demonstrate that 1 is unsuitable for use in models of disease where brain penetration is an essential requirement of the compound but would be an ideal peripherally restricted control. These data will contribute to the understanding of drug levels of 1 to overlay with appropriate in vivo efficacy endpoints, i.e. the PK-PD relationship. The identification of a suitable analogue of 1 (or 17) which combines Notum inhibition with CNS penetration would be a valuable chemical probe for investigating the role of Notum in disease models

    New small molecule inhibitors of histone methyl transferase DOT1L with a nitrile as a non-traditional replacement for heavy halogen atoms

    Get PDF
    A number of new nucleoside derivatives are disclosed as inhibitors of DOT1L activity. SARs established that DOT1L inhibition could be achieved through incorporation of polar groups and small heterocycles at the 5-position (5, 6, 12) or by the application of alternative nitrogenous bases (18). Based on these results, CN-SAH (19) was identified as a potent and selective inhibitor of DOT1L activity where the polar 5-nitrile group was shown by crystallography to bind in the hydrophobic pocket of DOT1L. In addition, we show that a polar nitrile group can be used as a non-traditional replacement for heavy halogen atoms

    Systematic Investigation of the Permeability of Androgen Receptor PROTACs

    Get PDF
    Bifunctional molecules known as PROTACs simultaneously bind an E3 ligase and a protein of interest to direct ubiquitination and clearance of that protein, and they have emerged in the past decade as an exciting new paradigm in drug discovery. In order to investigate the permeability and properties of these large molecules, we synthesized two panels of PROTAC molecules, constructed from a range of protein-target ligands, linkers, and E3 ligase ligands. The androgen receptor, which is a well-studied protein in the PROTAC field was used as a model system. The physicochemical properties and permeability of PROTACs are discussed

    High blood pressure in school children: prevalence and risk factors

    Get PDF
    BACKGROUND: The purpose of this study was to determine the prevalence of high blood pressure (HBP) and associated risk factors in school children 8 to 13 years of age. METHODS: Elementary school children (n = 1,066) were examined. Associations between HBP, body mass index (BMI), gender, ethnicity, and acanthosis nigricans (AN) were investigated using a school based cross-sectional study. Blood pressure was measured and the 95(th )percentile was used to determine HBP. Comparisons between children with and without HBP were utilized. The crude and multiple logistic regression adjusted odds ratios were used as measures of association. RESULTS: Females, Hispanics, overweight children, and children with AN had an increased likelihood of HBP. Overweight children (BMI ≄ 85(th )percentile) and those with AN were at least twice as likely to present with HBP after controlling for confounding factors. CONCLUSION: Twenty one percent of school children had HBP, especially the prevalence was higher among the overweight and Hispanic group. The association identified here can be used as independent markers for increased likelihood of HBP in children

    Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation

    Get PDF
    Histone acetyltransferases of the MYST family are recruited to chromatin by BRPF scaffolding proteins. We explored functional consequences and the therapeutic potential of inhibitors targeting acetyl-lysine dependent protein interaction domains (bromodomains) present in BRPF1-3 in bone maintenance. We report three potent and selective inhibitors: one (PFI-4) with high selectivity for the BRPF1B isoform, and two pan-BRPF bromodomain inhibitors (OF-1, NI-57). The developed inhibitors displaced BRPF bromodomains from chromatin and did not inhibit cell growth and proliferation. Intriguingly, the inhibitors impaired RANKL-induced differentiation of primary murine bone marrow cells and human primary monocytes into bone resorbing osteoclasts by specifically repressing transcriptional programs required for osteoclastogenesis. The data suggest a key role of BRPF in regulating gene expression during osteoclastogenesis and the excellent druggability of these bromodomains may lead to new treatment strategies for patients suffering from bone loss or osteolytic malignant bone lesions

    The proteostasis network provides targets for neurodegeneration

    Get PDF
    The production, quality control, and degradation of proteins is a tightly controlled process necessary for cell health. In order to regulate this process cells rely upon a network of molecular chaperone proteins that bind misfolded proteins and help them fold correctly. In addition, some molecular chaperones can target terminally misfolded proteins for degradation. Neurons are particularly dependent upon this 'proteostasis' system, failures in which lead to neurodegenerative disease. In this review we identify opportunities for modulating molecular chaperone activity with small molecules, which could lower the burden of misfolded protein within neurons, reducing cell death and ameliorating the effects of neurodegeneration

    4‐cyano‐2‐methoxybenzenesulfonyl chloride

    No full text
    Procedures yielding O‐(4‐cyano‐2‐methoxyphenyl) dimethylcarbamothioate (1) as white crystals, S‐(4‐cyano‐2‐methoxy‐phenyl)dimethylcarbamothioate (2) as a pure product, 4‐mercapto‐3‐methoxybenzonitrile (3) (14.4 g, 90%) as a slightly pungent white solid, and 4‐cyano‐2‐methoxybenzenesulfonyl chloride (4) as a yellow solid are presented. The chapter concludes with a discussion on sulfonamide functional group and related syntheses

    New approaches for the treatment of Alzheimer's disease

    No full text
    Alzheimer's disease (AD) is the most prevalent chronic neurodegenerative disease. Current approved therapies are symptomatic treatments having some effect on cognitive function. Therapies that target ÎČ-amyloid (AÎČ) have been the focus of efforts to develop a disease modification treatment for AD but these approaches have failed to show any clinical benefit so far. Beyond the 'AÎČ hypothesis', there are a number of newer approaches to treat AD with neuroinflammation emerging as a very active area of research based on risk gene analysis. This short review will summarize approved drug therapies, recent clinical trials and new approaches for the treatment of AD

    Carboxylesterase Notum Is a Druggable Target to Modulate Wnt Signaling

    Get PDF
    Regulation of the Wnt signaling pathway is critically important for a number of cellular processes in both development and adult mammalian biology. This Perspective will provide a summary of current and emerging therapeutic opportunities in modulating Wnt signaling, especially through inhibition of Notum carboxylesterase activity. Notum was recently shown to act as a negative regulator of Wnt signaling through the removal of an essential palmitoleate group. Inhibition of Notum activity may represent a new approach to treat disease where aberrant Notum activity has been identified as the underlying cause. Reliable screening technologies are available to identify inhibitors of Notum, and structural studies are accelerating the discovery of new inhibitors. A selection of these hits have been optimized to give fit-for-purpose small molecule inhibitors of Notum. Three noteworthy examples are LP-922056 (26), ABC99 (27), and ARUK3001185 (28), which are complementary chemical tools for exploring the role of Notum in Wnt signaling
    corecore