16 research outputs found

    Measuring the Impact of Full Coverage Deposit Insurance Policy in a Probit Model : A Study of the Privately Owned Commercial Banks in Turkey

    Get PDF
    This study analyzes the impact of full coverage deposit insurance policy as well as bank specific factors and macro economic conditions on bank failure over a sample of 35 privately owned commercial banks in Turkey for the period 1991-1998. The model predicts a high probability of bank failure associated with full coverage deposit insurance policy.Bank failure, Deposit Insurance

    Quantitative assessment of cell fate decision between autophagy and apoptosis

    Get PDF
    Abstract Autophagy and apoptosis are cellular processes that regulate cell survival and death, the former by eliminating dysfunctional components in the cell, the latter by programmed cell death. Stress signals can induce either process, and it is unclear how cells ‘assess’ cellular damage and make a ‘life’ or ‘death’ decision upon activating autophagy or apoptosis. A computational model of coupled apoptosis and autophagy is built here to analyze the underlying signaling and regulatory network dynamics. The model explains the experimentally observed differential deployment of autophagy and apoptosis in response to various stress signals. Autophagic response dominates at low-to-moderate stress; whereas the response shifts from autophagy (graded activation) to apoptosis (switch-like activation) with increasing stress intensity. The model reveals that cytoplasmic Ca2+ acts as a rheostat that fine-tunes autophagic and apoptotic responses. A G-protein signaling-mediated feedback loop maintains cytoplasmic Ca2+ level, which in turn governs autophagic response through an AMP-activated protein kinase (AMPK)-mediated feedforward loop. Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ) emerges as a determinant of the competing roles of cytoplasmic Ca2+ in autophagy regulation. The study demonstrates that the proposed model can be advantageously used for interrogating cell regulation events and developing pharmacological strategies for modulating cell decisions

    Antioxidant Approaches to Management of Ionizing Irradiation Injury

    Get PDF
    Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response

    Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis

    Get PDF
    Lipid peroxidation (LPO) drives ferroptosis execution. However, LPO has been shown to contribute also to other modes of regulated cell death (RCD). To clarify the role of LPO in different modes of RCD, we studied in a comprehensive approach the differential involvement of reactive oxygen species (ROS), phospholipid peroxidation products, and lipid ROS flux in the major prototype modes of RCD viz. apoptosis, necroptosis, ferroptosis, and pyroptosis. LC-MS oxidative lipidomics revealed robust peroxidation of three classes of phospholipids during ferroptosis with quantitative predominance of phosphatidylethanolamine species. Incomparably lower amounts of phospholipid peroxidation products were found in any of the other modes of RCD. Nonetheless, a strong increase in lipid ROS levels was detected in non-canonical pyroptosis, but only during cell membrane rupture. In contrast to ferroptosis, lipid ROS apparently was not involved in non-canonical pyroptosis execution nor in the release of IL-1 beta and IL-18, while clear dependency on CASP11 and GSDMD was observed. Our data demonstrate that ferroptosis is the only mode of RCD that depends on excessive phospholipid peroxidation for its cytotoxicity. In addition, our results also highlight the importance of performing kinetics and using different methods to monitor the occurrence of LPO. This should open the discussion on the implication of particular LPO events in relation to different modes of RCD

    Inhibition of Peroxidase Activity of Cytochrome c

    No full text

    Effect of inducible nitric oxide synthase on cerebral blood flow after experimental traumatic brain injury in mice.

    No full text
    Inducible nitric oxide synthase (iNOS) has been suggested to play a complex role in the response to central nervous system insults such as traumatic brain injury (TBI) and cerebral ischemia. In the current study, we quantified maps of regional cerebral blood flow (CBF) using an arterial spin-labeling magnetic resonance imaging (MRI) technique, at 24 and 72 h after experimental TBI in iNOS knockout (KO) and wild-type (WT) mice. Our hypothesis was that iNOS would contribute to the level of CBF at 72 h after experimental TBI in mice. Comparing anatomical brain regions of interest (ROIs) at 24-h post controlled cortical impact (CCI), there were significant reductions in CBF in the hemisphere, cortex, and contusion-rich area of the cortex of injured animals versus naive, regardless of genotype. Regional assessment of CBF at 72 h after injury demonstrated that recovery of CBF was reduced in the ipsilateral hippocampus, thalamus, and amygdala/piriform cortex in iNOS KO versus WT mice by 26%, 15%, and 21%, respectively; this attenuated recovery was restricted to structures outside the contusion. These regions with reduced CBF in iNOS KO mice represented ROIs where CBF in the WT was either numerically or statistically greater than that seen in respective WT naive, suggesting a contribution of iNOS to delayed posttraumatic hyperemia. However, pixel analysis denoted that the contribution of iNOS to CBF at 72 h was not limited to hyperemia flows. In conclusion, iNOS plays a role in the recovery of CBF after CCI in mice. Questions remain if this effect represents a homeostatic component of CBF recovery, pathologic vasodilatation linked to inflammation, or NO-mediated facilitation of angiogenesis.</p

    Magnetic resonance imaging assessment of macrophage accumulation in mouse brain after experimental traumatic brain injury.

    No full text
    Macrophages contribute to secondary damage and repair after central nervous system (CNS) injury. Micron-sized paramagnetic iron oxide (MPIO) particles can label macrophages in situ, facilitating three-dimensional (3D) mapping of macrophage accumulation following traumatic brain injury (TBI), via ex vivo magnetic resonance microscopy (MRM) and in vivo monitoring with magnetic resonance imaging (MRI). MPIO particles were injected intravenously (iv; 4.5 mg Fe/Kg) in male C57BL/6J mice (n = 21). A controlled cortical impact (CCI) was delivered to the left parietal cortex. Five protocols were used in naive and injured mice to assess feasibility, specificity, and optimal labeling time. In vivo imaging was carried out at 4.7 Tesla (T). Brains were then excised for 3D MRM at 11.7 T. Triple-label immunofluorescence (MPIO via Dragon Green, macrophages via F480, and nuclei via 4,6-diamidino-2-phenylindole [DAPI]) of brain sections confirmed MPIO particles within macrophages. MRM of naives showed an even distribution of a small number of MPIO-labeled macrophages in the brain. MRM at 48-72 h after CCI and MPIO injection revealed MPIO-labeled macrophages accumulated in the trauma region. When MPIO particles were injected 6 days before CCI, MRM 48 h after CCI also revealed labeled cells at the injury site. In vivo studies of macrophage accumulation by MRI suggest that this approach is feasible, but requires additional optimization. We conclude that MPIO labeling and ex vivo MRM mapping of macrophage accumulation for assessment of TBI is readily accomplished. This new technique could serve as an adjunct to conventional MR approaches by defining inflammatory mechanisms and therapeutic efficacy of anti-inflammatory agents in experimental TBI.</p

    Magnetic resonance imaging assessment of regional cerebral blood flow after asphyxial cardiac arrest in immature rats.

    No full text
    Cerebral blood flow (CBF) alterations after asphyxial cardiac arrest (CA) are not defined in developmental animal models or humans. We characterized regional and temporal changes in CBF from 5 to 150 mins after asphyxial CA of increasing duration (8.5, 9, 12 min) in postnatal day (PND) 17 rats using the noninvasive method of arterial spin-labeled magnetic resonance imaging (ASL-MRI). We also assessed blood-brain barrier (BBB) permeability, and evaluated the relationship between CBF and mean arterial pressure after resuscitation. After all durations of asphyxia CBF alterations were region dependent. After 8.5- and 9-min asphyxia, intense subcortical hyperemia at 5 min was followed by return of CBF to baseline values by 10 mins. After 12-min asphyxia, hyperemia was absent and hypoperfusion reached a nadir of 38% to 65% of baselines with the lowest values in the cortex. BBB was impermeable to gadoteridol 150 mins after CA. CBF in the 12-min CA group was blood pressure passive at 60 min assessed via infusion of epinephrine. ASL-MRI assessment of CBF after asphyxial CA in PND 17 rats reveals marked duration and region-specific reperfusion patterns and identifies possible new therapeutic targets.</p
    corecore