727 research outputs found

    Hardy Liston Jr. Symbol of Hope Award (2008)

    Get PDF

    On the non-existence of an R-labeling

    Full text link
    We present a family of Eulerian posets which does not have any R-labeling. The result uses a structure theorem for R-labelings of the butterfly poset.Comment: 6 pages, 1 figure. To appear in the journal Orde

    On the structure of the space of geometric product-form models

    Get PDF
    This article deals with Markovian models defined on a finite-dimensional discrete state space and possess a stationary state distribution of a product-form. We view the space of such models as a mathematical object and explore its structure. We focus on models on an orthant [script Z]+n, which are homogeneous within subsets of [script Z]+n called walls, and permit only state transitions whose [parallel R: parallel] [parallel R: parallel][infty infinity]-length is 1. The main finding is that the space of such models exhibits a decoupling principle: In order to produce a given product-form distribution, the transition rates on distinct walls of the same dimension can be selected without mutual interference. This principle holds also for state spaces with multiple corners (e.g., bounded boxes in [script Z]+n).\ud \ud In addition, we consider models which are homogeneous throughout a finite-dimensional grid [script Z]n, now without a fixed restriction on the length of the transitions. We characterize the collection of product-form measures which are invariant for a model of this kind. For such models with bounded transitions, we prove, using Choquet's theorem, that the only possible invariant measures are product-form measures and their combinations.\u

    Cyclotomic factors of the descent set polynomial

    Get PDF
    We introduce the notion of the descent set polynomial as an alternative way of encoding the sizes of descent classes of permutations. Descent set polynomials exhibit interesting factorization patterns. We explore the question of when particular cyclotomic factors divide these polynomials. As an instance we deduce that the proportion of odd entries in the descent set statistics in the symmetric group S_n only depends on the number on 1's in the binary expansion of n. We observe similar properties for the signed descent set statistics.Comment: 21 pages, revised the proof of the opening result and cleaned up notatio

    Present Knowledge of the Systematics and Zoogeography of the Order Gorgonacea in Hawaii

    Get PDF
    Past knowledge of the order Gorgonacea in Hawaii is based almost exclusively on the collections of the United States Fish Commission steamer Albatross in 1902, which contain 52 species. Recent efforts to investigate the ecology of precious coral have produced a new collection based on 183 dredge hauls and 10 dives with a submersible. This program is collectively referred to as the Sango Expedition. Of 59 species of gorgonians obtained by the Sango Expedition, 13 are considered to be new species and 28 new geographic records, bringing the total number of species considered to be present in Hawaii to 93 species. In contrast to the high diversity of gorgonians in the West Indies and the Indo-West-Pacific, the faunal list in Hawaii must still be considered depauperate. This is especially true in shallow water <75 m), where only one species is known. Although climatic deterioration during the Pleistocene could account for the scarcity of gorgonians in shallow water at the present time, this factor is unlikely to have affected deeper species. Furthermore, one would expect to find a modern complement of an ancestral faun a in shallow water if it had existed, as is true in the case of reef corals. The paucity of gorgonians in Hawaii may be due to isolation, which appears to have been a particularly effective barrier in shallow water. It is suggested that the only accessible route to Hawaii for gorgonians has been in deep water where, in the past, there were numerous stepping stones that may have aided dispersal. Moreover, chemical and physical gradients in deep water are relatively low. Why more deepwater species have not migrated into shallow water in Hawaii may be a reflection of their stenotypic character

    Classification of the factorial functions of Eulerian binomial and Sheffer posets

    Get PDF
    We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!n!, the factorial function of the infinite Boolean algebra, or 2n12^{n-1}, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n)=n!B(n) = n! has Sheffer factorial function D(n) identical to that of the infinite Boolean algebra, the infinite Boolean algebra with two new coatoms inserted, or the infinite cubical poset. Moreover, we are able to classify the Sheffer factorial functions of Eulerian Sheffer posets with binomial factorial function B(n)=2n1B(n) = 2^{n-1} as the doubling of an upside down tree with ranks 1 and 2 modified. When we impose the further condition that a given Eulerian binomial or Eulerian Sheffer poset is a lattice, this forces the poset to be the infinite Boolean algebra BXB_X or the infinite cubical lattice CX<C_X^{< \infty}. We also include several poset constructions that have the same factorial functions as the infinite cubical poset, demonstrating that classifying Eulerian Sheffer posets is a difficult problem.Comment: 23 pages. Minor revisions throughout. Most noticeable is title change. To appear in JCT

    Level Eulerian Posets

    Full text link
    The notion of level posets is introduced. This class of infinite posets has the property that between every two adjacent ranks the same bipartite graph occurs. When the adjacency matrix is indecomposable, we determine the length of the longest interval one needs to check to verify Eulerianness. Furthermore, we show that every level Eulerian poset associated to an indecomposable matrix has even order. A condition for verifying shellability is introduced and is automated using the algebra of walks. Applying the Skolem--Mahler--Lech theorem, the ab{\bf ab}-series of a level poset is shown to be a rational generating function in the non-commutative variables a{\bf a} and b{\bf b}. In the case the poset is also Eulerian, the analogous result holds for the cd{\bf cd}-series. Using coalgebraic techniques a method is developed to recognize the cd{\bf cd}-series matrix of a level Eulerian poset

    The Tchebyshev transforms of the first and second kind

    Full text link
    We give an in-depth study of the Tchebyshev transforms of the first and second kind of a poset, recently discovered by Hetyei. The Tchebyshev transform (of the first kind) preserves desirable combinatorial properties, including Eulerianess (due to Hetyei) and EL-shellability. It is also a linear transformation on flag vectors. When restricted to Eulerian posets, it corresponds to the Billera, Ehrenborg and Readdy omega map of oriented matroids. One consequence is that nonnegativity of the cd-index is maintained. The Tchebyshev transform of the second kind is a Hopf algebra endomorphism on the space of quasisymmetric functions QSym. It coincides with Stembridge's peak enumerator for Eulerian posets, but differs for general posets. The complete spectrum is determined, generalizing work of Billera, Hsiao and van Willigenburg. The type B quasisymmetric function of a poset is introduced. Like Ehrenborg's classical quasisymmetric function of a poset, this map is a comodule morphism with respect to the quasisymmetric functions QSym. Similarities among the omega map, Ehrenborg's r-signed Birkhoff transform, and the Tchebyshev transforms motivate a general study of chain maps. One such occurrence, the chain map of the second kind, is a Hopf algebra endomorphism on the quasisymmetric functions QSym and is an instance of Aguiar, Bergeron and Sottile's result on the terminal object in the category of combinatorial Hopf algebras. In contrast, the chain map of the first kind is both an algebra map and a comodule endomorphism on the type B quasisymmetric functions BQSym.Comment: 33 page
    corecore