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We introduce the notion of the descent set polynomial as an
alternative way of encoding the sizes of descent classes of permu-
tations. Descent set polynomials exhibit interesting factorization
patterns. We explore the question of when particular cyclotomic
factors divide these polynomials. As an instance we deduce that
the proportion of odd entries in the descent set statistics in the
symmetric group Sn only depends on the number on 1’s in the
binary expansion of n. We observe similar properties for the signed
descent set statistics.
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1. Introduction

The study of the behavior of the descent sets of permutations in the symmetric group Sn on
n elements usually involves such questions as maximizing the descent set or determining inequal-
ities which hold among the entries [4,8–10,14–16]. The usual way to encode the descent statistic
information is via the Eulerian polynomial An(t) = ∑

S βn(S) · t|S|+1, where S runs over all subsets of
[n − 1] = {1, . . . ,n − 1}, and βn(S) denotes the number of permutations of size n with descent set
S . We instead introduce the descent set polynomial where the statistic of interest appears in the ex-
ponent of the variable t rather than as a coefficient. That is, the nth descent set polynomial is defined
by

Q n(t) =
∑

S

tβn(S),

where S ranges over all subsets of [n − 1].
The degree of the descent set polynomial is given by the nth Euler number, which grows faster

than exponential. Despite this, these polynomials appear to have curious factorization properties,
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Table 1
The proportion ρ(n) for at most five 1’s in the binary expansion of n

k n = 2k − 1 ρ(n) 1/2 − ρ(n)

1 1 1 −1/2
2 3 1/2 0
3 7 1/2 0
4 15 29/26 3/26

5 31 3991/213 3 · 5 · 7/213

in particular, having factors which are cyclotomic polynomials; see Table 2. This paper explains the
occurrence of certain cyclotomic factors. We have displayed these in boldface in the tables. Both com-
binatorial and number-theoretic properties (for example, the number of 1’s in the binary expansion
of n and the prime factorization of n) are involved in our investigations.

The divisibility by cyclotomic factors is related to the remainders of sizes of descent classes modulo
certain integers. As a simplest example, Q n(t) is divisible by the second cyclotomic polynomial Φ2 if
and only if the number of even descent set classes is equal to the number of odd descent set classes.
In other words, the proportion of even and odd entries in the descent set statistics is the same (in
the notation below, ρ(n) = 1/2) if and only if −1 is a root of the descent set polynomial. Somewhat
surprisingly, whether or not n has this property depends only on the number of 1’s in the binary
expansion of n.

The paper proceeds as follows. In Section 2 we look at the proportion of odd entries in the descent
set statistics. In Section 3 we discuss this result from the viewpoint of quasisymmetric functions
related to posets. We consider similar properties for the signed descent set statistics in Section 4.
The natural setting for this question is to look at flag vectors of zonotopes. In Section 5 we explore
patterns of descent statistics modulo 2p where p is a prime. Here we introduce the descent set
polynomial and consider divisibility by cyclotomic polynomials. In Section 7 we explore when the
descent set polynomial is divisible by the quadratic factors Φ2

2 , Φ2
4 and Φ2

2p . In Section 8 we introduce
type B quasisymmetric functions and the signed descent set polynomials. We use the former to describe
divisibility patterns of the latter. Finally, in the concluding remarks we make a number of observations
on the data presented in Tables 2 and 3.

2. The proportion of odd entries

For π = π1 · · ·πn a permutation in Sn , recall that the descent set of π is the subset of [n −1] given
by {i: πi > πi+1}. For a subset S of [n − 1] the number of permutations in Sn with descent set S is
denoted by βn(S).

Let ρ(n) denote the proportion of odd entries in the descent statistics in the symmetric group Sn ,
that is,

ρ(n) = |{S ⊆ [n − 1]: βn(S) ≡ 1 mod 2}|
2n−1

.

For instance, ρ(3) = 1/2 since in the data β3(∅) = β3({1,2}) = 1 and β3({1}) = β3({2}) = 2 exactly
half of the entries are odd.

The first few values of the proportion ρ(n) are shown in Table 1. In this section we prove the
following result.

Theorem 2.1. The proportion of odd entries in the descent set statistics ρ(n) only depends on the number of 1’s
in the binary expansion of the integer n.

Recall that a composition of n is a list γ = (γ1, γ2, . . . , γm) of positive integers such that γ1 +γ2 +
· · · + γm = n. The multinomial coefficient is defined by(

n

γ

)
= n!

γ ! · γ ! · · ·γ ! .
1 2 m
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Define a bijection D between subsets of the set [n − 1] and compositions of n by sending the set
{s1 < s2 < · · · < sm−1} to the composition (s1, s2 − s1, s3 − s2, . . . ,n − sm−1). Let αn(S) denote the
multinomial coefficient

( n
D(S)

)
. The following is a classic result due to MacMahon.

Lemma 2.2. Let S be a subset of [n − 1]. Then the number of permutations in Sn with descent set contained
in S is αn(S), and we have

βn(S) =
∑
T ⊆S

(−1)|S−T | · αn(T ).

We need Kummer’s theorem for the multinomial coefficient version.

Theorem 2.3. For a prime p and a composition γ = (γ1, γ2, . . . , γm) of n, the largest power d such that pd

divides the multinomial coefficient
(n
γ

)
is equal to the number of carries when adding γ1 + γ2 + · · · + γm in

base p.

As a corollary we can determine whether a multinomial coefficient is even or odd. This corollary
also follows from Lucas’ congruence for binomial coefficients.

Corollary 2.4. For a composition γ = (γ1, γ2, . . . , γm) of n, the multinomial coefficient
(n
γ

)
is odd if and only

if there are no carries when adding γ1 + γ2 + · · · + γm in base 2, that is, for all i �= j, the binary expansions of
γi and γ j have no powers of 2 in common.

Let the binary expansion of n be n = 2 j1 + 2 j2 +· · ·+ 2 jk , where j1 > j2 > · · · > jk . Call an element
of [n − 1] essential if it can be expressed as

∑
i∈B 2 ji for some nonempty proper subset B of [k];

otherwise, call this element nonessential.

Lemma 2.5. If S ⊆ [n − 1] contains a nonessential element si , then αn(S) is even, that is, αn(S) ≡ 0 mod 2.

Proof. Let γ = (γ1, γ2, . . . , γm) be the associated composition D(S). Notice in the addition (γ1 +· · ·+
γi)+ (γi+1 +· · ·+γm) = si + (n − si) = n there is a carry in base 2. Hence it follows from Corollary 2.4
that αn(S) is even. �
Lemma 2.6. Let S be a subset of [n − 1], and suppose that i ∈ [n − 1] − S is a nonessential element. Then

βn(S) ≡ βn
(

S ∪ {i}) mod 2.

Proof. By Lemmas 2.2 and 2.5, we have

β
(

S ∪ {i}) =
∑
T ⊆S

(−1)|S−T |+1 · αn(T ) +
∑
T ⊆S

(−1)|S−T | · αn
(
T ∪ {i})

= −βn(S) +
∑
T ⊆S

(−1)|S−T | · αn
(
T ∪ {i})

≡ βn(S) mod 2. �
Lemma 2.7. Let S = {s1 < s2 < · · · < sm−1} be a subset of [n − 1] consisting of essential elements, so that
there are nonempty proper subsets B1, B2, . . . , Bm−1 of [k] such that sr = ∑

i∈Br
2 ji . Then αn(S) is odd if and

only if B1 ⊆ B2 ⊆ · · · ⊆ Bm−1 .

Proof. Let B0 = ∅ and Bm = [k]. If B1 ⊆ B2 ⊆ · · · ⊆ Bm−1 then γr = sr − sr−1 = ∑
i∈Br−Br−1

2 ji . Then
there is no carry in the addition γ1 +· · ·+γm = n and hence αn(S) is odd. On the other hand, if αn(S)

is odd then there are no carries in the addition γ1 + · · · + γm = n, so all the 2-powers that appear in
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γ1, . . . , γm must be disjoint. Since sr is given by the partial sum γ1 +· · ·+γr , the 2-powers appearing
in sr must be contained among the 2-powers appearing in sr+1, that is, Br ⊆ Br+1. �
Lemma 2.8. Let n have k 1’s in its binary expansion. Let E = {e1, e2, . . . , e2k−1} be the set of essential elements
of [n − 1], where the ei ’s are listed in increasing order: e1 < e2 < · · · < e2k−1 . Let S = {si1 , si2 , . . . , sim } be a
subset of E and Ŝ be the set of indices of S, that is, Ŝ = {i1, i2, . . . , im}. Then the parity of βn(S) is the same as
the parity of β2k−1(̂S).

Proof. From Lemma 2.7 it follows that the parity of αn(S) is the same as the parity of α2k−1 (̂S). Now
the result follows by

βn(S) =
∑
T ⊆S

(−1)|S−T | · αn(T ) ≡
∑
T̂ ⊆Ŝ

(−1)|̂S−T̂ | · α2k−1(T̂ ) = β2k−1 (̂S) mod 2. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. It follows from Lemma 2.6 that the proportion of odd entries among βn(S)

for S ⊆ [n − 1] is the same as the proportion of odd entries among βn(S) for S ⊆ E . By Lemma 2.8
the proportion of odd entries among βn(S) for S ⊆ E depends on k, the number of 1’s in the binary
expansion of n. �
3. Quasisymmetric functions and posets

In this section we relate the preceding result to the theory of quasisymmetric functions.
Consider the ring Z[[w1, w2, . . .]] of power series with bounded degree. A function f in this ring

is called quasisymmetric if for any sequence of positive integers γ1, γ2, . . . , γm we have[
wγ1

i1
· · · wγm

ik

]
f = [

wγ1
j1

· · · wγm
jk

]
f

whenever i1 < · · · < im and j1 < · · · < jm , and where [wγ ] f denotes the coefficient of wγ in f .
Denote by QSym ⊆ Z[[w1, w2, . . .]] the ring of quasisymmetric functions.

For a composition γ = (γ1, γ2, . . . , γm) the monomial quasisymmetric function Mγ is given by

Mγ =
∑

i1<···<im

wγ1
i1

· · · wγm
im

.

Definition 3.1. Let P be a graded poset with rank function ρ . Define the quasisymmetric function
F (P ) of the poset P by

F (P ) =
∑

c

Mρ(c),

where the sum ranges over all chains c = {0̂ = x0 < x1 < · · · < xm = 1̂} in P , ρ(c) denotes the
composition (ρ(x0, x1),ρ(x1, x2), . . . , ρ(xm−1, xm)), and ρ(x, y) denotes the rank difference ρ(x, y) =
ρ(y) − ρ(x).

The quasisymmetric function of a poset is multiplicative, that is, for two graded posets P and Q
the quasisymmetric function of their Cartesian product is given by the product of the respective
quasisymmetric functions:

F (P × Q ) = F (P ) · F (Q );
see Proposition 4.4 in [6]. Recall that the Boolean algebra Bn is the Cartesian power of the chain of
two elements B1, that is, Bn = Bn

1 and F (B1) = w1 + w2 + · · · . Hence we have that F (Bn) = F (B1)
n =

Mn
(1) = (w1 + w2 + · · ·)n .
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Let P be a graded poset of rank n. For a subset S = {s1 < s2 < · · · < sm−1} of [n − 1], define the
flag f -vector entry f S to be the number of chains {0̂ = x0 < x1 < · · · < xm = 1̂} such that ρ(xi) = si for
1 � i � m − 1. The flag h-vector is defined by the invertible relation

hS =
∑
T ⊆S

(−1)|S−T | · f T .

Recall the bijection D between subsets of [n − 1] and compositions of n defined in Section 2.
By abuse of notation we will write M S instead of MD(S) , where the degree of the quasisymmetric
function is understood. Then Lemma 4.2 in [6] states that the quasisymmetric function of a poset
encodes the flag f -vector, that is,

F (P ) =
∑

S⊆[n−1]
f S · M S .

The fundamental quasisymmetric function LT is given by

LT =
∑
T ⊆S

M S .

Note that one can write F (P ) in terms of fundamental quasisymmetric functions:

F (P ) =
∑

S⊆[n−1]
hS · L S .

If the poset P is a Boolean algebra Bn then hS = βn(S). This is straightforward to observe
using the classical R-labeling of the Boolean algebra [17, Section 3.13] or by direct enumeration
[17, Corollary 3.12.2]. The multiplicative property B�+m ∼= B� × Bm allows us to compute F (Bn) mod-
ulo 2:

Lemma 3.2. For m = 2 j we have F (Bm) ≡ M(m) mod 2. Consequently, for n = 2 j1 +· · ·+2 jk with j1 > · · · >
jk � 0 we have F (Bn) ≡ ∏k

i=1 M(2 ji ) mod 2.

Proof. It is enough to prove the first statement. Recall the congruence (a + b)2 j ≡ a2 j + b2 j
mod 2.

Now we have

F
(

B2 j

) = (w1 + w2 + · · ·)2 j ≡ w2 j

1 + w2 j

2 + · · · = M(2 j) mod 2. �
An ordered partition π of a set [k] is a list of non-empty pairwise disjoint sets (B1, B2, . . . , B j) such

that their union is [k].

Theorem 3.3. For positive integers m1,m2, . . . ,mk, the product of the quasisymmetric functions
M(m1) · M(m2) · · · M(mk) is given by

M(m1) · M(m2) · · · M(mk) =
∑
π

M S(π)

where

S(π) = D−1
(( ∑

i∈B1

mi,
∑
i∈B2

mi, . . . ,
∑
i∈B j

mi

))
,

and π = (B1, B2, . . . , B j) ranges over all ordered partitions of the set [k].

Proof. The theorem can be proved by iterating Lemma 3.3 in [6]. �
In view of Lemma 3.2, the following is a restatement of Theorem 2.1 in the language of quasisym-

metric functions.
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Theorem 3.4. The proportion of odd coefficients in the quasisymmetric function f = M(2 j1 ) · M(2 j2 ) · · · M
(2 jk )

when expressed in the L-basis only depends on k.

Proof. There is a natural partially ordered set Πk on ordered partitions of [k] with the cover relation
π ≺ σ whenever σ is obtained from π by merging two adjacent blocks. Expressing the quasisym-
metric function f in terms of the L-basis, we get

f =
∑

π∈Πk

M S(π) =
∑

π∈Πk

∑
T ⊇S(π)

(−1)|T −S(π)| · LT ,

where S(π) is defined as in Theorem 3.3 for mi = 2 ji . Thus the coefficient of LT is given by the sum∑
π∈Πk: S(π)⊆T

(−1)|T −S(π)|.

As in the proof of Theorem 2.1, considering pairs of sets T and T ∪ {i}, where i /∈ T is a nonessential
element, we conclude that the proportion of odd coefficients in the expansion of f in the L-basis
only depends on sets T consisting solely of essential elements. The coefficients corresponding to such
T depend only on the poset Πk , that is, only on k, because of the above expression for the coefficient
of LT . �

Theorem 2.1 implies that for n = 2 j all the entries in the descent set statistics are odd. Hence it is
interesting to look at this data modulo 4.

Theorem 3.5. For n = 2 j � 4 exactly half of the descent set statistics are congruent to 1 modulo 4, and the
other half are congruent to 3 modulo 4.

Proof. First we claim that F (Bn) ≡ M(n) + 2M(n/2,n/2) mod 4. This identity follows from the observa-
tion (a + 2b)2 ≡ a2 mod 4 and by induction on j, where the induction step is

F (B2n) ≡ (M(n) + 2M(n/2,n/2))
2 ≡ M2

(n) ≡ M(2n) + 2M(n,n) mod 4.

We have the expansion

M(n) + 2M(n/2,n/2) = M∅ + 2M{n/2}

=
∑

S

(−1)|S| · L S − 2 ·
∑

n/2∈S

(−1)|S| · L S

=
∑

n/2/∈S

(−1)|S| · L S −
∑

n/2∈S

(−1)|S| · L S .

Hence the descent set statistics modulo 4 are given by βn(S) ≡ (−1)|S−{n/2}| mod 4. Thus for 1 /∈ S
the values of βn(S) and βn(S ∪ {1}) have the opposite sign modulo 4, proving the result. �
4. The signed descent set statistics

A signed permutation of size n is of the form π = π1 · · ·πn where each πi belongs to the set
{±1, . . . ,±n} and |π1| · · · |πn| is a permutation. Let S±

n be the set of signed permutations of size n.
For ease of notation put π0 = 0. The descent set of a signed permutation π is a subset of [n] defined
as {i: πi−1 > πi}. For S ⊆ [n] let β±

n (S) denote the number of permutations in S±
n with descent

set S .
An equivalent way to using quasisymmetric functions to encode the flag f -vector data of a poset

is via the ab-index. Let a and b be two non-commutative variables. For S ⊆ [n − 1] let uS be the
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monomial u1u2 · · · un−1 where ui = a if i /∈ S and ui = b if i ∈ S . The ab-index of a poset P of rank n
is defined as the sum

Ψ (P ) =
∑

S

hS · uS .

When the poset P is Eulerian then its ab-index can be written in terms of c = a + b and d = ab +
ba. This more compact form removes all linear redundancies among the flag vector entries [2]. The
linear relations satisfied by the flag f -vectors of Eulerian posets are known as the generalized Dehn–
Sommerville relations [1]. Similarly to quasisymmetric functions, the ab-index and cd-index also have
an underlying coalgebra structure. For more details, see [11].

The poset associated to signed permutations is the cubical lattice Cn , that is, the face lattice of an
n-dimensional cube. Observe that Cn has rank n + 1. We have

Ψ (Cn) =
∑

S⊆[n]
β±

n (S) · uS .

A more general setting for the cd-index of the cube is that of zonotopes. Recall that a zonotope
is a Minkowski sum of line segments. Associated to every zonotope Z there is a central hyperplane
arrangement H. Let L be the intersection lattice of the arrangement H. A result by Billera, Ehrenborg,
and Readdy [3] shows how to compute the cd-index of the zonotope from the ab-index of the inter-
section lattice L. First, introduce the linear map ω from Z〈a,b〉 to Z〈c,d〉 defined on an ab-monomial
as follows. Replace each occurrence of ab by 2d and then replace the remaining letters by c. The main
result in [3] states that the cd-index of the zonotope Z is given by

Ψ (Z) = ω
(
a · Ψ (L)

)
. (4.1)

In particular, for the cubical lattice we have

Ψ (Cn) = ω
(
a · Ψ (Bn)

)
, (4.2)

since the associated hyperplane arrangement is the coordinate arrangement and its intersection lattice
is the Boolean algebra.

Considering Eq. (4.1) modulo 2, we observe that Ψ (Z) ≡ cn mod 2 and hence we obtain the fol-
lowing result.

Lemma 4.1. All the entries of the flag h-vector of a zonotope are odd. In particular, all the signed descent set
statistics are odd.

In order to understand the flag h-vector modulo 4, we need a few lemmas.

Lemma 4.2. After expanding the cd-polynomial

n−2∑
i=0

ci · d · cn−i−2

into an ab-polynomial, exactly half of the coefficients are odd.

Proof. Since d ≡ ab − ba mod 2, it is sufficient to consider the identity

n−2∑
i=0

ci · (ab − ba) · cn−i−2 = a · (a + b)n−2 · b − b · (a + b)n−2 · a.

This identity holds since the coefficient of an ab-polynomial in the sum is the number of occurrences
of ab minus the number of occurrences of ba in the monomial. This difference only depends on the
first and last letter in the monomial and the identity follows. To complete the proof, observe that out
of 2n ab-monomials of degree n, exactly 2n−1 appear in the right-hand side of the identity. �
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Lemma 4.3. Let z and w be two homogeneous polynomials in Z〈a,b〉 of degree m and n, respectively, each
having exactly half of their coefficients odd. Then the two ab-polynomials

ci · z · c j and z · cn + cm · w

also each have exactly half of their coefficients odd.

Proof. We only prove the second statement of the lemma. We omit the proof of the first, as it is
similar and easier. Let u and v be two ab-monomials of degrees m and n, respectively. The coefficient
of u · v in z · cn + cm · w is given by the sum of the coefficients of u in z and of v in w . Hence the
coefficient of u · v is even when the coefficients of u and v are both even (2m−1 · 2n−1 cases) or the
coefficients of u and v are both odd (2m−1 · 2n−1 cases). �

Combining Lemmas 4.2 and 4.3, we have:

Proposition 4.4. Let α1, . . . ,αn be integers, not all of which are even. When the cd-polynomial

n−2∑
i=0

αi · ci · d · cn−i−2

is expanded into an ab-polynomial, exactly half of the coefficients are odd.

Theorem 4.5. For a zonotope Z either (i) exactly half of the flag h-vector entries are congruent to 1 modulo 4,
and the other half are congruent to 3 modulo 4; or (ii) all the flag h-vector entries are congruent to 1 modulo 4.

Proof. Considering the identity (4.1), we observe that the only terms in the right-hand side with
non-zero coefficients modulo 4 are cn and those cd-monomials having exactly one d, that is,

Ψ (Z) ≡ cn + 2 ·
(

n−2∑
i=0

αi · ci · d · cn−i−2

)
mod 4.

If all the αi ’s are even then the flag h-vector entries are congruent to 1 modulo 4. If at least one αi
is odd, then by Proposition 4.4 exactly half of the flag h-vector entries are congruent to 1 modulo 4
and the other half are congruent to 3 modulo 4. �

Now we consider the cubical lattice, that is, the signed descent set statistics modulo 4.

Theorem 4.6. For an integer n � 2, exactly half of the signed descent set statistics are congruent to 1 modulo 4,
and the other half are congruent to 3 modulo 4.

Proof. Observe that there are 2n atoms in the cubical lattice. Hence h{1} = 2n − 1 ≡ 3 mod 4. Thus the
result follows from Theorem 4.5. �
5. Descent set statistics modulo 2p

For a set S of integers and a non-zero integer q, define the two notions q · S and S/q by

q · S = {q · s: s ∈ S},
S/q = {s/q: s ∈ S and q | s}.

Recall that αn(S) (resp., βn(S)) denotes the number of permutations in Sn with descent set contained
in (resp., equal to) S .
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Proposition 5.1. Let q = pt , where p is a prime and t is a non-negative integer. Let n = r · q, where r is a
positive integer. Then the descent set statistics modulo p are given by

βn(S) ≡ (−1)|S−q·[r−1]| · βr(S/q) mod p,

where S ⊆ [n − 1].

Proof. Observe that

Mr
(1) = F (Br) =

∑
S⊆[r−1]

αr(S) · M S .

In this quasisymmetric function identity make the substitution wi �−→ wq
i . We then obtain

Mr
(q) =

∑
S⊆[r−1]

αr(S) · Mq·S

=
∑

S⊆[r−1]

∑
T ⊆[n−1]

q·S⊆T

αr(S) · (−1)|T −q·S| · LT

=
∑

T ⊆[n−1]

∑
q·S⊆T

αr(S) · (−1)|T −q·S| · LT

=
∑

T ⊆[n−1]
(−1)|T −q·[r−1]| ·

( ∑
S⊆T /q

αr(S) · (−1)|T /q−S|
)

· LT

=
∑

T ⊆[n−1]
(−1)|T −q·[r−1]| · βr(T /q) · LT .

Since Mq
(1) ≡ M(q) mod p, we have F (Bn) = (Mq

(1))
r ≡ Mr

(q) mod p. Now by reading off the coefficients
of LT , the result follows. �
Corollary 5.2. Let q = pt , where p is a prime and t is a non-negative integer. Then

βq(S) ≡ (−1)|S| mod p.

Proof. The claim can be deduced from Proposition 5.1 by setting r = 1. A direct argument proceeds
as follows. Since (a + b)q ≡ aq + bq mod p, we have

F (Bq) = (w1 + w2 + · · ·)q

≡ wq
1 + wq

2 + · · ·
= M(q) =

∑
S

(−1)|S| · L S mod p. �

Corollary 5.3. Let q = pt , where p is a prime and t is a non-negative integer. Then

β2q(S) ≡ (−1)|S−{q}| mod p.

Proof. The result follows from Proposition 5.1 by setting r = 2 and noting that β2(∅) = β2({1}) = 1. �
For n having the binary expansion n = 2 j1 + 2 j2 + · · · + 2 jk , where j1 > j2 > · · · > jk � 0, recall

that an element j ∈ [n − 1] is nonessential if j is not a sum of a subset of {2 j1 ,2 j2 , . . . ,2 jk }.

Theorem 5.4. Let q = pt for p an odd prime and t a non-negative integer, and let n = r ·q, where r is a positive
integer. Suppose that there is a nonessential element j ∈ [n −1] that is not divisible by q. Furthermore, suppose
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that there exist integers a and b not divisible by p such that a ≡ b mod 2, and βn(S) is congruent to either a
or b modulo p for all S ⊆ [n − 1]. Then∣∣{S ⊆ [n − 1]: βn(S) ≡ a mod 2p

}∣∣ = ∣∣{S ⊆ [n − 1]: βn(S) ≡ b mod 2p
}∣∣,∣∣{S ⊆ [n − 1]: βn(S) ≡ a + p mod 2p

}∣∣ = ∣∣{S ⊆ [n − 1]: βn(S) ≡ b + p mod 2p
}∣∣.

In the case when the proportion ρ(n) is 1/2, the four cardinalities above are all equal to 2n−3 .

Proof. Consider the collection of sets S ⊆ [n − 1] such that βn(S) ≡ a ≡ b mod 2. For S in this collec-
tion such that j /∈ S , we have βn(S) ≡ βn(S ∪ { j}) mod 2. However, since q does not divide j, we have
βn(S) ≡ −βn(S ∪ { j}) mod p by Proposition 5.1, that is, βn(S) �≡ βn(S ∪ { j}) mod p, as a (resp., b) is
not congruent to −a (resp., −b) modulo p. Hence this collection splits into two classes of equal size
when divided according to the value of β(S) modulo 2p. The same argument holds for the sets S
satisfying β(S) ≡ a + p ≡ b + p mod 2. �

By the Chinese remainder theorem, we have β(S) ≡ ±1, p ± 1 mod 2p. For non-Mersenne primes
we can say more.

Theorem 5.5. Let q = pt be an odd prime power which has k 1’s in its binary expansion. Suppose that q >

2k − 1, that is, q is not a Mersenne prime. Then∣∣{S ⊆ [q − 1]: βq(S) ≡ 1 mod 2p
}∣∣ = ∣∣{S ⊆ [q − 1]: βq(S) ≡ −1 mod 2p

}∣∣,∣∣{S ⊆ [q − 1]: βq(S) ≡ p − 1 mod 2p
}∣∣ = ∣∣{S ⊆ [q − 1]: βq(S) ≡ p + 1 mod 2p

}∣∣.
In the case the proportion ρ(q) is 1/2, the four cardinalities above are equal to 2q−3 .

Proof. Since q > 2k − 1, as in the proof of Theorem 3.4 there exists a nonessential element j ∈ [q − 1].
Thus Theorem 5.4 applies. �

When q = p is a prime and k = 2, Theorem 5.5 applies only to the Fermat primes which are
greater than 3, that is, 5, 17, 257 and 65537. We also know that the proportion is 1/2 for the
case k = 3, that is, primes whose binary expansion has three 1’s. The first few such primes are
7,11,13,19,37,41,67,73,97; see sequence A081091 in The On-Line Encyclopedia of Integer Se-
quences.

For prime powers of the form q = pt with t � 2, the only case with k = 2 we know is q = 32.
Similarly, with k = 3 we know six cases: 52, 72, 34, 172, 232, 2572 and 655372. It is not surprising
that the squares of the Fermat’s primes and the square of 32 appear in this list. The two sporadic
cases are 72 and 232.

The next theorem concerns permutations of size twice a prime power.

Theorem 5.6. Let q = pt be an odd prime power which has k 1’s in its binary expansion. Then∣∣{S ⊆ [2q − 1]: β2q(S) ≡ 1 mod 2p
}∣∣ = ∣∣{S ⊆ [2q − 1]: β2q(S) ≡ −1 mod 2p

}∣∣,∣∣{S ⊆ [2q − 1]: β2q(S) ≡ p − 1 mod 2p
}∣∣ = ∣∣{S ⊆ [2q − 1]: β2q(S) ≡ p + 1 mod 2p

}∣∣.
In the case the proportion ρ(q) is 1/2, the four cardinalities above are equal to 22q−3 .

Proof. By Corollary 5.3, β2q(S) ≡ (−1)|S−{q}| mod p. Furthermore, since 2q is even, the element 1 is
nonessential, and Theorem 5.4 applies. �
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6. The descent set polynomial

A different approach to view the results from the previous sections is in terms of the descent set
polynomial

Q n(t) =
∑

S⊆[n−1]
tβn(S).

The degree of this polynomial is the nth Euler number En . For n � 2 the polynomial is divisible by 2t .
Theorems 2.1, 3.5, 5.5 and 5.6 can be reformulated as follows.

Theorem 6.1.

(i) For a positive integer n we have Q n(−1) = 2n · (1/2 − ρ(n)). In particular, when n has two or three 1’s
in its binary expansion, then −1 is a root of Q n(t).

(ii) For n = 2 j � 4 the imaginary unit i is a root of Q n(t).
(iii) Let q = pt be a prime power, where p is an odd prime. Suppose that q has k 1’s in its binary expansion

and satisfies q > 2k − 1. Let ζ be a primitive 2pth root of unity. Then

Q q(ζ ) = 2q · Re(ζ ) ·
(
ρ(q) − 1

2

)
,

where Re(ζ ) denotes the real part of ζ .
(iv) Let q = pt be a prime power, where p is an odd prime. Suppose that q has k 1’s in its binary expansion.

Let ζ be a primitive 2pth root of unity. Then

Q 2q(ζ ) = 22q · Re(ζ ) ·
(
ρ(q) − 1

2

)
.

It is curious to observe that the polynomial Q n(t) quite often has zeroes occurring at roots of unity.
An equivalent formulation is that Q n(t) often has cyclotomic polynomials Φk(t) as factors. (Recall that
the cyclotomic polynomial Φk(t) is defined as the product

∏
ζ (t − ζ ), where ζ ranges over all primitive

kth roots of unity.) See Table 2 for the cyclotomic factors of Q n(t) for n � 23.

Lemma 6.2. Let q be an odd prime power. Then the cyclotomic polynomial Φq does not divide the descent set
polynomial Q n(t).

Proof. If q is a power of an odd prime p then Φq(1) = p. Since Q n(1) = 2n−1 has no odd factors, the
lemma follows. �
Lemma 6.3. Let q be the odd prime power pt . Then

(i) If n = 2 j then the cyclotomic polynomial Φ2q does not divide Q n(t).
(ii) If n has four 1’s in its binary expansion and p � 5 then the cyclotomic polynomial Φ2q does not di-

vide Q n(t).
(iii) If n has five 1’s in its binary expansion and p � 11 then the cyclotomic polynomial Φ2q does not di-

vide Q n(t).

Proof. We have Φ2q(−1) = p. Since Q n(−1) = 2n · (1/2 − ρ(n)) the result follows by consulting Ta-
ble 1. �
7. Quadratic factors in the descent set polynomial

In order to study the double root behavior of the descent set polynomial Q n(t) or, equivalently,
quadratic factors in Q n(t), we need to prove a few identities for the descent set statistics. We begin
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Table 2
Cyclotomic factors of Q n(t)

by introducing the multivariate ab- and cd-indexes. Let a1,a2, . . . and b1,b2, . . . be non-commutative
variables. For S ⊆ [n − 1] let uS be the monomial u1u2 · · · un−1 where ui = ai if i /∈ S and ui = bi if
i ∈ S . The multivariate ab-index of a poset P of rank n is defined as the sum

Ψ (P ) =
∑

S

hS · uS ,

where S ranges over all subsets of [n − 1].

Lemma 7.1. For an Eulerian poset P the multivariate ab-index can be written in terms of the non-commutative
variables ci = ai + bi and di,i+1 = aibi+1 + biai+1 .

Proof. Observe that by adding the index i to the ith letter in an ab-monomial of degree n − 1, we
obtain a natural bijection between the regular and the multivariate ab-indices of the same poset P .
Thus the statement of the lemma is equivalent to the statement that the regular ab-index of P can
be expressed in terms of the variables c = a + b and d = ab + ba. �

In this case, we call the resulting polynomial the multivariate cd-index. Observe that for a rank n
Eulerian poset each of the indices 1 through n appears in each monomial of the multivariate cd-index.

Proposition 7.2. Let hS be the flag h-vector of an Eulerian poset P of rank n, or more generally, hS belongs
to the generalized Dehn–Sommerville subspace. Let T ⊆ [n − 1] such that T contains an interval [s, t] =
{s, s + 1, . . . , t} of odd cardinality with s − 1, t + 1 /∈ T . Then∑

S⊆[n−1]
(−1)|S∩T | · hS = 0.
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Proof. The sum is obtained from the multivariate ab-index of the poset P by setting ai = 1 and

bi =
{−1 if i ∈ T ,

1 otherwise.

Notice that ci = 0 for i ∈ [s, t] and that ds−1,s = dt,t+1 = 0. If s = 1 we set d0,1 = 0, and if t = n −1 we
set dn−1,n = 0. Since P is Eulerian, the multivariate ab-index can be written in terms of multivariate
cd-monomials (Lemma 7.1). A multivariate cd-monomial that contains ds−1,s or dt,t+1 evaluates to
zero. Since the interval [s, t] has odd size, a multivariate cd-monomial not containing ds−1,s and
dt,t+1 must contain at least one variable ci with i ∈ [s, t]. Hence this monomial also evaluates to
zero. �

Observe that the identity in Proposition 7.2 is a part of the generalized Dehn–Sommerville rela-
tions; see [1].

Theorem 7.3. If the binary expansion of n has two 1’s and n > 3, then Φ2
2 divides Q n(t).

Proof. Suppose that n = m1 + m2, where m1 = 2 j1 , m2 = 2 j2 , and j1 > j2. From the proof of Theo-
rem 3.4 we have

βn(S) ≡
{

1 mod 2 if |S ∩ {m1,m2}| = 0,2,

0 mod 2 if |S ∩ {m1,m2}| = 1.

Hence

Q ′
n(−1) =

∑
S⊆[n−1]

βn(S) · (−1)βn(S)−1 =
∑

S⊆[n−1]
(−1)|S∩{m1,m2}| · βn(S),

which is zero by Proposition 7.2. �
Theorem 7.4. If n = 2 j � 4 then Φ2

4 divides Q n(t).

Proof. Let m = n/2. The proof of Theorem 3.5 states that β(S) ≡ (−1)|S−{m}| mod 4. Let i be the
imaginary unit, so that i2 = −1. Observe that i(−1)k−1 = (−1)k . We have

Q ′
n(i) =

∑
S⊆[n−1]

βn(S) · iβn(S)−1 =
∑

S⊆[n−1]
(−1)|S−{m}| · βn(S).

By Proposition 7.2, Q ′
n(i) = 0 since S −{m} = S ∩ {1, . . . ,m − 1,m + 1, . . . ,n − 1} and m − 1 is odd. �

The next result applies to prime powers that have two 1’s in their binary expansion. The only
cases known so far are the five known Fermat primes 3,5,17,257,65537 and the prime power 32.

Theorem 7.5. Let q = pt be a prime power, where p is an odd prime and assume that q has two 1’s in its
binary expansion. Then the cyclotomic polynomial Φ2

2p divides Q 2q(t).

Proof. In this case n = 2q = m + 2, where m = 2 j . From the proof of Theorem 3.4 we have

β2q(S) ≡
{

1 mod 2 if |S ∩ {2,m}| = 0,2,

0 mod 2 if |S ∩ {2,m}| = 1.

Hence combining it with the proof of Corollary 5.3, we have

β2q(S) ≡
{

(−1)|S−{q}| mod 2p if |S ∩ {2,m}| = 0,2,

p + (−1)|S−{q}| mod 2p if |S ∩ {2,m}| = 1.
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Thus for ζ = Re(ζ ) + Im(ζ ) · i a 2pth primitive root of unity, we have that

ζ β2q(S) = (−1)|S∩{2,m}| · ζ (−1)|S−{q}|

= (−1)|S∩{2,m}| · (Re(ζ ) + (−1)|S−{q}| · Im(ζ ) · i
)
.

Evaluating the sum and using the fact that∣∣S ∩ {2,m}∣∣ + ∣∣S − {q}∣∣ ≡ ∣∣S ∩ {2,q,m}∣∣ mod 2

we have

ζ · Q ′
2q(ζ ) =

∑
S⊆[2q−1]

β2q(S) · ζ β2q(S)

= Re(ζ ) ·
∑

S⊆[2q−1]
(−1)|S∩{2,m}| · β2q(S) + Im(ζ ) · i ·

∑
S⊆[2q−1]

(−1)|S∩{2,q,m}| · β2q(S),

where both sums vanish by Proposition 7.2. �
8. The signed descent set polynomial

Similarly to the descent set polynomial we can define the signed descent set polynomial:

Q ±
n (t) =

∑
S⊆[n]

tβ±
n (S);

see Section 4 for definitions relevant to signed permutations. The degree of this polynomial is the nth
signed Euler number E±

n , which is the number of alternating signed permutations of size n. Yet again,
for n � 1 this polynomial is divisible by 2t . Theorem 4.6 can now be stated as follows.

Theorem 8.1. For n � 2 the signed descent set polynomial Q ±
n (t) has the cyclotomic factor Φ4 .

The space of quasisymmetric functions of type B is defined as BQSym = Z[s] ⊗ QSym. Quasisym-
metric functions of type B were first defined by Chow [5]. We will view them to be functions in the
variables s, w1, w2, . . . , that are quasisymmetric in w1, w2, . . . . For a composition (γ0, . . . , γm) define
the monomial quasisymmetric function of type B by

M B
(γ0,γ1,...,γm) = sγ0−1 · M(γ1,...,γm).

A third method to encode the flag vector data of a poset P of rank at least 1 is the quasisymmetric
function of type B

F B(P ) =
∑

c

M B
ρ(c), (8.1)

where the sum is over all chains c = {0̂ = x0 < x1 < · · · < xm = 1̂} in the poset P ; see [12]. A different
way to write Eq. (8.1) is

F B(P ) =
∑

0̂<x�1̂

sρ(x)−1 · F
([x, 1̂]). (8.2)

The diamond product of two posets P and Q is

P � Q = (
P − {0̂}) × (

Q − {0̂}) ∪ {0̂}.
Using identity (8.2) one can show that the type B quasisymmetric function of a poset is multiplicative
with respect to the diamond product of posets, that is, F B(P � Q ) = F B(P ) · F B(Q ). Applying the
bijection D between compositions and subsets, we have

F B(P ) =
∑

S⊆[n−1]
f S · M B

S ,
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where we write M B
S instead of M B

D(S) , and the poset P has rank n. The fundamental quasisymmetric

function of type B , denoted by LB
T , is given by

LB
T =

∑
T ⊆S

M B
S .

Then the flag h-vector appears as the coefficients in the decomposition

F B(P ) =
∑

S⊆[n−1]
hS · LB

S ,

where the poset P has rank n.
The cubical lattice Cn has rank n + 1 and can be obtained as a diamond power of the Boolean

algebra B2, that is, Cn = B�n
2 . Therefore we have the following result.

Lemma 8.2. The type B quasisymmetric function of the cubical lattice is given by

F B(Cn) = (s + 2 · M(1))
n.

Theorem 8.3. For p an odd prime the cyclotomic polynomial Φ4p divides the signed descent set polyno-
mial Q ±

p (t).

Proof. Observe that modulo 4 we have

F B(C p) ≡ (s + 2 · M(1))
p

≡ sp + 2 · p · sp−1 · M(1)

≡ M B
(p+1) + 2 · p · M B

(p,1)

≡ M B
∅

+ 2 · M B{p}
≡

∑
S⊆[p]

(−1)|S| · LB
S + 2 ·

∑
p∈S

(−1)|S|−1 · LB
S

≡
∑
p /∈S

(−1)|S| · LB
S +

∑
p∈S

(−1)|S|−1 · LB
S mod 4.

Hence the signed descent set statistics satisfy β±
p (S) ≡ (−1)|S−{p}| mod 4 for S ⊆ [p]. Now modulo p

we have

F B(C p) ≡ (s + 2 · M(1))
p

≡ sp + 2 · M(p)

≡ M B
(p+1) + 2 · M B

(1,p)

≡ M B
∅

+ 2 · M B{1} mod p.

This directly implies that β±
p (S) ≡ (−1)|S−{1}| mod p. Combining these two statements we obtain

β±
p (S) ≡

⎧⎪⎨⎪⎩
(−1)|S| mod 4p if 1, p /∈ S,

(−1)|S|−1 mod 4p if 1, p ∈ S,

2 · p + (−1)|S| mod 4p if 1 /∈ S, p ∈ S,

2 · p + (−1)|S|−1 mod 4p if 1 ∈ S, p /∈ S.

(8.3)

Observe that for p /∈ S we have β±
p (S) ≡ β±

p (S ∪ {p}) + 2 · p mod 4p, implying that ζ β±
p (S) =

−ζ β±
p (S∪{p}) for ζ a 4pth primitive root of unity. Now sum over all subsets of [p], and the result

follows. �
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Theorem 8.4. For p an odd prime, Φ2
4p does not divide the signed descent set polynomial Q ±

p (t). In fact,

evaluating the derivative of the signed descent set polynomial Q ±
p (t) at ζ , where ζ is a 4pth primitive root of

unity, gives

ζ · Q ±′
p (ζ ) = Im(ζ ) · i · (−1)(p−1)/2 · 2p · p · E p−1.

Proof. From (8.3) we have:

ζ · Q ±′
p (ζ ) =

∑
S⊆[p]

β±
p (S) · ζ β±

p (S)

=
∑

S⊆[p]
β±

p (S) · (−1)|S∩{1,p}| · ζ (−1)|S−{1}|

= Re(ζ ) ·
∑

S⊆[p]
β±

p (S) · (−1)|S∩{1,p}| + Im(ζ ) · i ·
∑

S⊆[p]
β±

p (S) · (−1)|S∩{1,p}| · (−1)|S−{1}|.

The first sum is zero by Proposition 7.2. The second sum simplifies to

Im(ζ ) · i ·
∑

S⊆[p]
β±

p (S) · (−1)|S∩[1,p−1]|.

This sum can evaluated by setting a j = 1, b1 = · · · = bp−1 = −1 and bp = 1 in the multivariate
ab-index of the cubical lattice C p . Observe that c1 = · · · = cp−1 = 0 and dp−1,p = 0. Hence the only
surviving cd-monomial is d1,2 · · ·dp−2,p−1cp . The coefficient of this monomial is computed as follows:[

d(p−1)/2c
]
Ψ (C p) = 2(p−1)/2 · [(2d)(p−1)/2c

]
Ψ (C p)

= 2(p−1)/2 · ([(ab)(p−1)/2a
]
a · Ψ (B p) + [

(ab)(p−1)/2b
]
a · Ψ (B p)

)
= 2(p−1)/2 · p · [b(ab)(p−3)/2]Ψ (B p−1)

= 2(p−1)/2 · p · E p−1.

The third step is MacMahon’s “Multiplication Theorem”; see [13, Article 159]. It can be stated in terms
of the ab-indices as follows:

[uav]Ψ (Bm+n) + [ubv]Ψ (Bm+n) =
(

m + n

m

)
· [u]Ψ (Bm) + [v]Ψ (Bn),

where u and v have degrees m − 1 and n − 1, respectively. The monomial itself evaluates to
(−2)(p−1)/2 · 2, since d1,2 = · · · = dp−2,p−1 = −2 and cp = 2. Combining all the factors, the evalua-
tion at ζ follows. �
9. Concluding remarks

Is there a reason why ρ(n) − 1/2 factors so nicely? See Table 1.
The two main results for unsigned permutations in Section 2, Theorems 2.1 and 3.4, can also be

proved using the ab-index and the mixing operator; see [7]. We have omitted this approach since
Kummer’s theorem and the quasisymmetric functions are more succinct in this case.

Tables 2 and 3 contain cyclotomic factors of polynomials Q n(t) and Q ±
n (t) for small n. Those

factors whose presence is explained in this paper are highlighted in boldface. Here are several obser-
vations about the data in Table 2:

(i) All the indices k of cyclotomic factors Φk of the polynomials Q n(t) are even.
(ii) Any prime factor p that occurs in an index of a cyclotomic factor of Q n(t) is less than or equal

to n.
(iii) If Φk1 and Φk2 are factors of Q n(t), so is Φgcd(k1,k2) . That is, the set of indices is closed under

the meet operation in the divisor lattice.
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Table 3
Cyclotomic factors of Q ±

n (t)

(iv) If k1 divides k2, k2 divides k3 and Φk1 and Φk3 occur as factors in Q n(t), then so does Φk2 . This
is convexity in the divisor lattice.

(v) If both Φk1 and Φk2 divide Q n(t), where k1 divides k2, then the multiplicity of Φk1 is greater
than or equal to the multiplicity of Φk2 .

(vi) If p is not a Mersenne prime then the largest cyclotomic factor occurring in Q p(t) is Φ2p .
(vii) When ρ(n) �= 1/2 then there are no cyclotomic factors in the descent set polynomial Q n(t).

(viii) For all primes p we conjecture that Φ2
2p divides Q 2p .

Moreover for the signed descent set polynomial we observe that:

(ix) For n � 3 the cyclotomic polynomial Φ4n divides the signed descent set polynomial Q ±
n (t).

(x) For n � 5 the cyclotomic polynomial Φ4n(n−1) divides the signed descent set polynomial Q ±
n (t).

Can these phenomena be explained?
For what pairs of an integer n and a prime number p does the descent set statistic βn(S) only

take two values modulo p?
Finally, we end with two number-theoretic questions. Are there infinitely many primes whose

binary expansion has three 1’s? The only reference for these primes we found is The On-Line En-
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cyclopedia of Integer Sequences, sequence A081091. Are there any more prime powers with two or
three ones in its binary expansion?
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