26 research outputs found

    Effects of clothianidin exposure on sperm quality, testicular apoptosis and fatty acid composition in developing male rats

    Get PDF
    Clothianidin (CTD) is one of the latest members of the synthetic organic insecticides, the neonicotinoids. In the present study, it was aimed to investigate if daily oral administration of CTD at low doses for 90 days has any deleterious effects on reproductive functions of developing male rats. Animals were randomly divided into four groups of six rats each, assigned as control rats, or rats treated with 2 (CTD-2), 8 (CTD-8) or 32 (CTD-32) mg CTD/kg body weight by oral gavage. The significant decreases of the absolute weights of right cauda epididymis and seminal vesicles, and body weight were detected in the animals exposed to CTD administration at 32 mg/kgBW/day. Epididymal sperm concentration decreased significantly in CTD-32 group and the abnormal sperm rates increased in CTD- 8 and CTD-32 groups when compared to control group. The testosterone level was significantly decreased in CTD-32 group when compared to control group. The administration of all CTD doses resulted in a significant decrease in the level of GSH. The number of TUNELpositive cells significantly increased in the germinal epithelium of testis of rats exposed to CTD at 32 mg/kgBW/day. In groups CTD-8 and CTD-32, only docosapentaenoic, arachidonic, palmitic and palmitoleic acids were significantly elevated when compared to control. The ratios of 20:4/18:2 and 18:1n−9/ 18:0 were decreased when rats exposed to CTD. Sperm DNA fragmentation was observed in CTD-32 group, but not CTD-2 and CTD-8. It is concluded that low doses of CTD exposure during critical stages of sexual maturation had moderate detrimental effects on reproductive organ system and more severe effects are likely to be observed at higher dose levels. In addition, the reproductive system may be more sensitive to exposure of CTD even earlier in development (prenatal and early postnatal), and therefore it could be expected that more severe effects could also be observed at the NOAEL dose levels, if dosing had occurred in utero or early postnatal

    Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats

    Get PDF
    We investigated whether treatment with imidacloprid would induce morphological changes, DNA fragmentation, antioxidant imbalance and apoptosis in the reproductive system of developing male rats. Twenty-four male rats were included in this 90-day study, starting at 7 days of age. The rats were divided into four groups. The first group was used as control. The second, third and fourth groups received oral 0.5-, 2- and 8-mg/kg imidacloprid, respectively. Serum, spermand testis sampleswere collected fromall groups at the end of the experimental period. Theweights of the epididymis, vesicula seminalis, epididymal sperm concentration, body weight gain, testosterone and reduced glutathione values were lower in the imidacloprid-treated groups than that in the controls. All treated groups had increased lipid peroxidation, fatty acid concentrations and higher rates of abnormal sperm. Apoptosis and fragmentation of seminal DNA were higher in rats treated at the two higher doses of imidacloprid. These results show that this compound has a negative effect on sperm and testis of rat

    Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin-diabetic male rats

    Get PDF
    Diabetes mellitus is a well-recognized cause of male sexual dysfunction and impairments of male fertility. Streptozotocin (STZ) is used for medical treatment of neoplastic islet -cells of pancreas and producing of animal model of diabetes mellitus type 1 that is characterized by suppression of reproductive activity due to the hyperglycaemia-induced oxidative stress and histopathological alterations in testes. Seeking for the agents that could alleviate diabetes-induced damage to reproductive system is yet the important area of inquiry. The present study was designed to evaluate whether hydrated C60 fullerene (C60HyFn), which is known to be powerful bioantioxidant, eliminate testicular dysfunction induced by STZ-diabetes in rats. Wistar strain male albino rats were divided into four groups of six animals each: (1) control group, (2) C60HyFn-treated nondiabetic group, (3) STZ-diabetic group and (4) C60HyFn-treated diabetic group. Once hyperglycaemia was induced by STZ, rats in the second and fourth groups were treated with C60HyFn (in the form of drinking water) at the dose of 4 g/kg daily for 5 weeks. In diabetic rats, relative weights of right cauda epididymis, seminal vesicles, prostate, sperm motility and epididymal sperm concentration were significantly less than those of control group, but which were restored in the fourth group treated with C60HyFn (p < 0.001). In hematoxylin and eosin staining, marked histopathological changes including degeneration, desquamation, disorganisation and reduction in germinal cells, interstitial oedema and congestion were evident in the testis of diabetic rats, but C60HyFn treatment resulted in recovery of histopathological changes and an increase in Johnsen’s testicular score significantly (p < 0.001). C60HyFn treatment restores the increased apoptosis induced by STZ-diabetes. In diabetic rats, levels of serum testosterone, testicular reduced glutathione (GSH) and alpha-tocopherol were significantly reduced and testicular lipid peroxidation level was increased (p < 0.001). Nevertheless, treatment of diabetic rats with C60HyFn resulted in significant corrective effects on these parameters towards the control levels. C60HyFn, applied alone, did not exert any toxic effects in testicular tissues. Furthermore, C60HyFn treatment in diabetic and nondiabetic rats resulted in considerable elevations of some important polyunsaturated fatty acids. In conclusion, we have presented for the first time substantial evidence that administration of C60HyFn significantly reduces diabetes-induced oxidative stress and associated complications such as testicular dysfunction and spermatogenic disruptio

    Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus

    No full text
    There is a clearly documented link between diabetic complications and lipid peroxidation. Hyperglycemia causes a reduction in levels of protective endogenous antioxidants and increases generation of free radicals. The present Study was carried out to compare the protective effects of melatonin and vitamin E against streptozocin (STZ)-induced diabetes in rats. Melatonin was administered s.c. (100 mug/kg) whereas vitamin E was given i.p. (100 mg/kg) after induction of diabetes with STZ (60 mg/kg). Plasma total cholesterol, triglyceride and low density lipoprotein (LDL) levels were increased in STZ group while both melatonin and vitamin E injection caused a significant decrease in the levels of all these parameters. The lipid lowering effect of melatonin was greater than that of vitamin E. Melatonin caused a significant decrease in brain, liver and kidney tissue malondialdehyde (MDA) levels which were increased because of STZ-induced diabetes. Vitamin E also reduced elevated NIDA concentrations in diabetic rat tissues, but the effect of melatonin vas more potent than that of vitamin E. Furthermore, treatment of diabetic rats with melatonin increased brain and kidney glutathione peroxidase (GSH-Px) activity to the levels below that of control rats. Vitamin E was found to be less effective on GSH-Px activity levels in brain and kidney than melatonin whereas it was more potent than melatonin in liver. In summary, melatonin prevents many diabetic complications by reducing oxidative stress and protects organisms from oxidative damage and dyslipidemia. Considering the much lower molar concentration of melatonin compared with vitamin E, melatonin seems to be a more potent antioxidant, especially in the brain and kidney. There is a clearly documented link between diabetic complications and lipid peroxidation. Hyperglycemia causes a reduction in levels of protective endogenous antioxidants and increases generation of free radicals. The present study was carried out to compare the protective effects of melatonin and vitamin E against streptozocin (STZ)-induced diabetes in rats. Melatonin was administered s.c. (100 microg/kg) whereas vitamin E was given i.p. (100 mg/kg) after induction of diabetes with STZ (60 mg/kg). Plasma total cholesterol, triglyceride and low density lipoprotein (LDL) levels were increased in STZ group while both melatonin and vitamin E injection caused a significant decrease in the levels of all these parameters. The lipid lowering effect of melatonin was greater than that of vitamin E. Melatonin caused a significant decrease in brain, liver and kidney tissue malondialdehyde (MDA) levels which were increased because of STZ-induced diabetes. Vitamin E also reduced elevated MDA concentrations in diabetic rat tissues, but the effect of melatonin was more potent than that of vitamin E. Furthermore, treatment of diabetic rats with melatonin increased brain and kidney glutathione peroxidase (GSH-Px) activity to the levels below that of control rats. Vitamin E was found to be less effective on GSH-Px activity levels in brain and kidney than melatonin whereas it was more potent than melatonin in liver. In summary, melatonin prevents many diabetic complications by reducing oxidative stress and protects organisms from oxidative damage and dyslipidemia. Considering the much lower molar concentration of melatonin compared with vitamin E, melatonin seems to be a more potent antioxidant, especially in the brain and kidney.</p

    Effect of melatonin on oxidative status of rat brain, liver and kidney tissues under constant light exposure

    No full text
    An enormous amount of data has been published in recent years demonstrating melatonin's defensive role against toxic free radicals. In the present study, we examined the role of melatonin as an antioxidant against the effect of continuous light exposure. Rats were divided into three groups. Control rats (group A) were kept under natural conditions whereas other group of rats (group B and C) were exposed to constant light for inhibition of melatonin secretion by the pineal gland. Group C rats also received melatonin via s.c. injection (1 mg kg(-1) body weight day(-1)). At the end of experiment, ail animals were sacrificied by decapitation, serum and tissue samples were removed for determination of malondialdehyde (MDA), a product of lipid peroxidation, conjugated dienes levels and glutathione peroxidase (GSH-Px) activity levels. It was found that lipid peroxidation was increased in the rats which were exposed to constant light. Melatonin injection caused a decrease in lipid peroxidation, especially in the brain. In addition, melatonin application resulted in increased GSH-Px activity, which has an antioxidant effect. Thus, melatonin is not only a direct scavenger of toxic radicals, but also stimulates the antioxidative enzyme GSH-Px activity to detoxify hydroxyl radical produced by constant light exposure. Copyright (C) 2001 John Wiley & Sons, Ltd.An enormous amount of data has been published in recent years demonstrating melatonin&#39;s defensive role against toxic free radicals. In the present study, we examined the role of melatonin as an antioxidant against the effect of continuous light exposure. Rats were divided into three groups. Control rats (group A) were kept under natural conditions whereas other group of rats (group B and C) were exposed to constant light for inhibition of melatonin secretion by the pineal gland. Group C rats also received melatonin via s.c. injection (1 mg x kg(- 1) body weight x day(- 1)). At the end of experiment, all animals were sacrificied by decapitation, serum and tissue samples were removed for determination of malondialdehyde (MDA), a product of lipid peroxidation, conjugated dienes levels and glutathione peroxidase (GSH-Px) activity levels. It was found that lipid peroxidation was increased in the rats which were exposed to constant light. Melatonin injection caused a decrease in lipid peroxidation, especially in the brain. In addition, melatonin application resulted in increased GSH-Px activity, which has an antioxidant effect. Thus, melatonin is not only a direct scavenger of toxic radicals, but also stimulates the antioxidative enzyme GSH-Px activity to detoxify hydroxyl radical produced by constant light exposure.</p
    corecore