13 research outputs found

    Improving Hydrologic Simulations of a Small Watershed through Soil Data Integration

    Get PDF
    The effects of soil data sources on the performance of hydrologic model simulations remain poorly understood compared to the effects of other data inputs. This paper investigated the effects of different soil datasets in simulating streamflow and sediment yield using the Soil and Water Assessment Tool (SWAT). Furthermore, potential improvements in watershed simulations were evaluated by integrating field measured soil parameters (user soil) with global soil datasets. Five soil datasets, namely user soil, AfSIS (Africa Soil Information Service), Food and Agriculture Organization (FAO), and two integrated soils (User-AfSIS and User-FAO) produced by assimilating the user soil with the latter two, were evaluated. The benefits of the user soil in improving streamflow simulations to better replicate observed flow were greater at daily time steps than monthly. Compared to the individual AfSIS and FAO soils, their integration with the user soil improved the daily Nash-Sutcliffe Efficiency (NSE) by 0.19 and 0.17 during model calibration, respectively. Overall, all soils performed relatively similar with monthly sediment yield simulations, which were improved when it was integrated with the user soil. Based on selected rainfall events, the watershed response time was less than 1 h, which suggests that the watershed has a quick runoff response time. This paper showed that streamflow and sediment yield simulation performances of freely available global soil datasets can be improved through integration with locally measured soil information. This study demonstrated that the availability of local soil information is critical for daily hydrologic model simulations, which is critical for planning effective soil and water management practices at plot and field scales

    Effects of a deep-rooted crop and soil amended with charcoal on spatial and temporal runoff patterns in a degrading tropical highland watershed

    No full text
    Placement and hence performance of many soil and water conservation structures in tropical highlands has proven to be challenging due to uncertainty of the actual location of runoff-generating areas in the landscape. This is the case especially in the (sub-)humid areas of the Ethiopian highlands, resulting in limited success of such conservation measures. To improve understanding of the effect of land use on spatial and temporal runoff patterns in the Ethiopian highlands, we monitored runoff volumes from 24 runoff plots constructed in the 113 ha Anjeni watershed, where historical data of rainfall and stream discharge were available. In addition, we assessed the effectiveness of charcoal amendment of the soil and crop rooting depth in reducing runoff, and we compared the effect of lupine (a deep-rooted crop) to that of barley. We also measured daily rainfall, surface runoff, and root zone moisture contents during the monsoon seasons of 2012 and 2013 (with all plots being tilled in 2012, but only barley plots tilled in 2013). In addition, we analyzed long-term surface runoff from four plots, and outlet discharge data from the research site (1989–1993) were analyzed and compared with our observations. Results showed that the degrees of soil degradation and soil disturbance (tillage) were significant factors affecting plot-scale runoff responses. As expected, runoff was greater from more degraded soils. Overall, under the commonly applied lupine cropping practice, runoff was higher than under the commonly applied barley cropping practice. In particular, considerable difference was observed during smaller rainfall events (approximately < 20 mm) in 2013, when lupine plots (non-tilled) had greater runoff than barley plots (tilled). Charcoal tended to decrease runoff, but results were not significant

    Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay

    No full text
    Small-scale vegetable and fruit crop producers in the USA use locally available commercial organic fertilizers and soil amendments recycled from municipal and agricultural wastes. Organic soil amendments provide crops with their nutrient needs and maintain soil health by modifying its physical, chemical, and biological properties. However, organic soil amendments might add unwanted elements such as toxic heavy metals or salts, which might inhibit crop growth and reduce yield. Therefore, the objective of this study was to evaluate phytotoxicity of three commercial organic amendments, chicken manure, milorganite, and dairy manure, to collard greens using the seed germination bioassay and chemical analysis of the organic amendments. The seed germination bioassay was conducted by incubating collard greens seeds to germinate in 1:10 (w/v) organic amendment aqueous extracts. Results of this work identified phytotoxic effects of chicken manure and milorganite, but not dairy manure, to collard greens. Potentially phytotoxic chemicals such as copper, zinc, nickel, and salts were also higher in chicken manure and milorganite compared to dairy manure. In particular, nickel in chicken manure and milorganite aqueous extracts was 28-fold and 21-fold, respectively, higher than previously reported toxic levels to wheat seedlings. The results demonstrate the need for more research on phytotoxicity of commercial organic soil amendments to ensure their safe use in vegetable and fruit crop production systems

    Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay

    No full text
    Small-scale vegetable and fruit crop producers in the USA use locally available commercial organic fertilizers and soil amendments recycled from municipal and agricultural wastes. Organic soil amendments provide crops with their nutrient needs and maintain soil health by modifying its physical, chemical, and biological properties. However, organic soil amendments might add unwanted elements such as toxic heavy metals or salts, which might inhibit crop growth and reduce yield. Therefore, the objective of this study was to evaluate phytotoxicity of three commercial organic amendments, chicken manure, milorganite, and dairy manure, to collard greens using the seed germination bioassay and chemical analysis of the organic amendments. The seed germination bioassay was conducted by incubating collard greens seeds to germinate in 1:10 (w/v) organic amendment aqueous extracts. Results of this work identified phytotoxic effects of chicken manure and milorganite, but not dairy manure, to collard greens. Potentially phytotoxic chemicals such as copper, zinc, nickel, and salts were also higher in chicken manure and milorganite compared to dairy manure. In particular, nickel in chicken manure and milorganite aqueous extracts was 28-fold and 21-fold, respectively, higher than previously reported toxic levels to wheat seedlings. The results demonstrate the need for more research on phytotoxicity of commercial organic soil amendments to ensure their safe use in vegetable and fruit crop production systems

    Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay

    No full text
    Small-scale vegetable and fruit crop producers in the USA use locally available commercial organic fertilizers and soil amendments recycled from municipal and agricultural wastes. Organic soil amendments provide crops with their nutrient needs and maintain soil health by modifying its physical, chemical, and biological properties. However, organic soil amendments might add unwanted elements such as toxic heavy metals or salts, which might inhibit crop growth and reduce yield. Therefore, the objective of this study was to evaluate phytotoxicity of three commercial organic amendments, chicken manure, milorganite, and dairy manure, to collard greens using the seed germination bioassay and chemical analysis of the organic amendments. The seed germination bioassay was conducted by incubating collard greens seeds to germinate in 1:10 (w/v) organic amendment aqueous extracts. Results of this work identified phytotoxic effects of chicken manure and milorganite, but not dairy manure, to collard greens. Potentially phytotoxic chemicals such as copper, zinc, nickel, and salts were also higher in chicken manure and milorganite compared to dairy manure. In particular, nickel in chicken manure and milorganite aqueous extracts was 28-fold and 21-fold, respectively, higher than previously reported toxic levels to wheat seedlings. The results demonstrate the need for more research on phytotoxicity of commercial organic soil amendments to ensure their safe use in vegetable and fruit crop production systems

    Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay

    No full text
    Small-scale vegetable and fruit crop producers in the USA use locally available commercial organic fertilizers and soil amendments recycled from municipal and agricultural wastes. Organic soil amendments provide crops with their nutrient needs and maintain soil health by modifying its physical, chemical, and biological properties. However, organic soil amendments might add unwanted elements such as toxic heavy metals or salts, which might inhibit crop growth and reduce yield. Therefore, the objective of this study was to evaluate phytotoxicity of three commercial organic amendments, chicken manure, milorganite, and dairy manure, to collard greens using the seed germination bioassay and chemical analysis of the organic amendments. The seed germination bioassay was conducted by incubating collard greens seeds to germinate in 1:10 (w/v) organic amendment aqueous extracts. Results of this work identified phytotoxic effects of chicken manure and milorganite, but not dairy manure, to collard greens. Potentially phytotoxic chemicals such as copper, zinc, nickel, and salts were also higher in chicken manure and milorganite compared to dairy manure. In particular, nickel in chicken manure and milorganite aqueous extracts was 28-fold and 21-fold, respectively, higher than previously reported toxic levels to wheat seedlings. The results demonstrate the need for more research on phytotoxicity of commercial organic soil amendments to ensure their safe use in vegetable and fruit crop production systems

    Evaluating the performances of gridded satellite/reanalysis products in representing the rainfall climatology of Ethiopia

    No full text
    This study evaluated performances of the Climate Hazard Group Infrared Precipitation with stations version 2.0 (CHIRPS v2.0) and Multi-Source Weighted-Ensemble Precipitation version 2.8 (MSWEP v2.8) products against observed data. Rainfall climatology was simulated for different agro-ecological zones (AEZs) of Ethiopia during 1991–2020 at different temporal scales. Performance evaluations were made using continuous and statistical performance measures as well as Probability Density Function (PDF). CHIRPS v2.0 for estimating monthly, seasonal, and annual rainfall totals, and MSWEP v2.8 for daily rainfall have shown better performance over all AEZs. The two products display comparable performance for detecting daily rainfall occurrences over alpine AEZ, but MSWEP v2.8 is superior in the rest four AEZs. CHIRPS v2.0 outperforms MSWEP v2.8 for detecting most of the daily rainfall intensity classes over all AEZs. The findings will play a noteworthy role to improve the quality of hydro-climate studies in Ethiopia

    Local and regional climate trends and variabilities in Ethiopia: implications for climate change adaptations

    No full text
    Ethiopia is experiencing considerable impact of climate change and variability in the last five decades. Analyzing climate trends and variability is essential to develop effective adaptation strategies, particularly for countries vulnerable to climate change. This study analyzed trends and variabilities of climate (rainfall, maximum temperature (Tmax), and minimum temperature (Tmin)) at local and regional scales in Ethiopia. The local analysis was carried out considering each meteorological station, while the regional analyses were based on agro-ecological zones (AEZs). This study used observations from 47 rainfall and 37 temperature stations obtained from the Ethiopian Meteorological Institute (EMI) for the period of 1986 to 2020. The Modified Mann-Kendall (MMK) trend test and Theil Sen's slope estimator were used to analyze the trends and magnitudes of change, respectively, in rainfall as well as temperature. The coefficient of variation (CV) and standardized anomaly index (SAI) were also employed to evaluate rainfall and temperature variabilities. The local level analysis revealed that Bega (dry season), Kiremt (main rainy season), and annual rainfall showed increasing trend, albeit no significant, in most stations, but the rainfall in Belg (small rainy) season showed a non-significant decreasing trend. The regional levels analysis also indicated an increasing trend of Bega, Kiremt, and annual rainfall in most AEZs, while Belg rainfall showed a decreasing trend in the greater number of AEZs. The result of both local and regional levels of analysis discerned a spatially and temporally more homogeneous warming trend. Both Tmax and Tmin revealed an increasing trend in annual and seasonal scales at most meteorological stations. Likewise, an increase was recorded for mean Tmax and Tmin in entire/most AEZs. The observed trends and variabilities of rainfall and temperature have several implications for climate change adaptations. For example, the decrease in Belg rainfall in most AEZs would have a negative impact on areas that heavily depend on Belg season's rainfall for crop production. Some climate adaptation options include identifying short maturing crop varieties, soil moisture conservation, and supplemental irrigation of crops using harvested water during the main rainy season. Conversely, since the first three months of Bega season (October to December) are crop harvest season in most parts of Ethiopia, the increase in Bega rainfall would increase crop harvest loss, and hence, early planting date and identifying short maturing crops during the main rainy season are some climate adaptation strategies. Because of the increase in temperature, water demand for irrigation during Bega season will increase due to increased evapotranspiration. On the other hand, the increase in Kiremt rainfall can be harvested and used for supplemental irrigation during Bega as well as the small rainy season, particularly for early planting. In view of these findings, it is imperative to develop and implement effective climate-smart agricultural strategies specific to each agro-ecological zone (AEZ) to adapt to rainfall and temperature changes and variabilities
    corecore