9,434 research outputs found

    Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix

    Full text link
    We discuss an algebraic method for constructing eigenvectors of the transfer matrix of the eight vertex model at the discrete coupling parameters. We consider the algebraic Bethe ansatz of the elliptic quantum group Eτ,η(sl2)E_{\tau, \eta}(sl_2) for the case where the parameter η\eta satisfies 2Nη=m1+m2τ2 N \eta = m_1 + m_2 \tau for arbitrary integers NN, m1m_1 and m2m_2. When m1m_1 or m2m_2 is odd, the eigenvectors thus obtained have not been discussed previously. Furthermore, we construct a family of degenerate eigenvectors of the XYZ spin chain, some of which are shown to be related to the sl2sl_2 loop algebra symmetry of the XXZ spin chain. We show that the dimension of some degenerate eigenspace of the XYZ spin chain on LL sites is given by N2L/NN 2^{L/N}, if L/NL/N is an even integer. The construction of eigenvectors of the transfer matrices of some related IRF models is also discussed.Comment: 19 pages, no figure (revisd version with three appendices

    Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems

    Get PDF
    In this paper we explore the practical use of the corner transfer matrix and its higher-dimensional generalization, the corner tensor, to develop tensor network algorithms for the classical simulation of quantum lattice systems of infinite size. This exploration is done mainly in one and two spatial dimensions (1d and 2d). We describe a number of numerical algorithms based on corner matri- ces and tensors to approximate different ground state properties of these systems. The proposed methods make also use of matrix product operators and projected entangled pair operators, and naturally preserve spatial symmetries of the system such as translation invariance. In order to assess the validity of our algorithms, we provide preliminary benchmarking calculations for the spin-1/2 quantum Ising model in a transverse field in both 1d and 2d. Our methods are a plausible alternative to other well-established tensor network approaches such as iDMRG and iTEBD in 1d, and iPEPS and TERG in 2d. The computational complexity of the proposed algorithms is also considered and, in 2d, important differences are found depending on the chosen simulation scheme. We also discuss further possibilities, such as 3d quantum lattice systems, periodic boundary conditions, and real time evolution. This discussion leads us to reinterpret the standard iTEBD and iPEPS algorithms in terms of corner transfer matrices and corner tensors. Our paper also offers a perspective on many properties of the corner transfer matrix and its higher-dimensional generalizations in the light of novel tensor network methods.Comment: 25 pages, 32 figures, 2 tables. Revised version. Technical details on some of the algorithms have been moved to appendices. To appear in PR

    Bethe Ansatz Equations for the Broken ZNZ_{N}-Symmetric Model

    Get PDF
    We obtain the Bethe Ansatz equations for the broken ZN{\bf Z}_{N}-symmetric model by constructing a functional relation of the transfer matrix of LL-operators. This model is an elliptic off-critical extension of the Fateev-Zamolodchikov model. We calculate the free energy of this model on the basis of the string hypothesis.Comment: 43 pages, latex, 11 figure

    Analyticity and Integrabiity in the Chiral Potts Model

    Full text link
    We study the perturbation theory for the general non-integrable chiral Potts model depending on two chiral angles and a strength parameter and show how the analyticity of the ground state energy and correlation functions dramatically increases when the angles and the strength parameter satisfy the integrability condition. We further specialize to the superintegrable case and verify that a sum rule is obeyed.Comment: 31 pages in harvmac including 9 tables, several misprints eliminate

    Bulk, surface and corner free energy series for the chromatic polynomial on the square and triangular lattices

    Full text link
    We present an efficient algorithm for computing the partition function of the q-colouring problem (chromatic polynomial) on regular two-dimensional lattice strips. Our construction involves writing the transfer matrix as a product of sparse matrices, each of dimension ~ 3^m, where m is the number of lattice spacings across the strip. As a specific application, we obtain the large-q series of the bulk, surface and corner free energies of the chromatic polynomial. This extends the existing series for the square lattice by 32 terms, to order q^{-79}. On the triangular lattice, we verify Baxter's analytical expression for the bulk free energy (to order q^{-40}), and we are able to conjecture exact product formulae for the surface and corner free energies.Comment: 17 pages. Version 2: added 4 further term to the serie

    Orbital multicriticality in spin gapped quasi-1D antiferromagnets

    Full text link
    Motivated by the quasi-1D antiferromagnet CaV2_2O4_4, we explore spin-orbital systems in which the spin modes are gapped but orbitals are near a macroscopically degenerate classical transition. Within a simplified model we show that gapless orbital liquid phases possessing power-law correlations may occur without the strict condition of a continuous orbital symmetry. For the model proposed for CaV2_2O4_4, we find that an orbital phase with coexisting order parameters emerges from a multicritical point. The effective orbital model consists of zigzag-coupled transverse field Ising chains. The corresponding global phase diagram is constructed using field theory methods and analyzed near the multicritical point with the aid of an exact solution of a zigzag XXZ model.Comment: 9 page

    A possible combinatorial point for XYZ-spin chain

    Full text link
    We formulate and discuss a number of conjectures on the ground state vectors of the XYZ-spin chains of odd length with periodic boundary conditions and a special choice of the Hamiltonian parameters. In particular, arguments for the validity of a sum rule for the components, which describes in a sense the degree of antiferromagneticity of the chain, are given.Comment: AMSLaTeX, 15 page

    Some comments on developments in exact solutions in statistical mechanics since 1944

    Full text link
    Lars Onsager and Bruria Kaufman calculated the partition function of the Ising model exactly in 1944 and 1949. Since then there have been many developments in the exact solution of similar, but usually more complicated, models. Here I shall mention a few, and show how some of the latest work seems to be returning once again to the properties observed by Onsager and Kaufman.Comment: 28 pages, 5 figures, section on six-vertex model revise

    Free Energy of the Eight Vertex Model with an Odd Number of Lattice Sites

    Full text link
    We calculate the bulk contribution for the doubly degenerated largest eigenvalue of the transfer matrix of the eight vertex model with an odd number of lattice sites N in the disordered regime using the generic equation for roots proposed by Fabricius and McCoy. We show as expected that in the thermodynamic limit the result coincides with the one in the N even case.Comment: 11 pages LaTeX New introduction, Method change

    Partition function of the eight-vertex model with domain wall boundary condition

    Full text link
    We derive the recursive relations of the partition function for the eight-vertex model on an N×NN\times N square lattice with domain wall boundary condition. Solving the recursive relations, we obtain the explicit expression of the domain wall partition function of the model. In the trigonometric/rational limit, our results recover the corresponding ones for the six-vertex model.Comment: Latex file, 20 pages; V2, references adde
    • …
    corecore