17,039 research outputs found
Ex-nihilo: Obstacles Surrounding Teaching the Standard Model
The model of the Big Bang is an integral part of the national curriculum for
England. Previous work (e.g. Baxter 1989) has shown that pupils often come into
education with many and varied prior misconceptions emanating from both
internal and external sources. Whilst virtually all of these misconceptions can
be remedied, there will remain (by its very nature) the obstacle of ex-nihilo,
as characterised by the question `how do you get something from nothing?' There
are two origins of this obstacle: conceptual (i.e. knowledge-based) and
cultural (e.g. deeply held religious viewpoints). The article shows how the
citizenship section of the national curriculum, coming `online' in England from
September 2002, presents a new opportunity for exploiting these.Comment: 6 pages. Accepted for publication in Physics E
Gaudin Hypothesis for the XYZ Spin Chain
The XYZ spin chain is considered in the framework of the generalized
algebraic Bethe ansatz developed by Takhtajan and Faddeev. The sum of norms of
the Bethe vectors is computed and expressed in the form of a Jacobian. This
result corresponds to the Gaudin hypothesis for the XYZ spin chain.Comment: 12 pages, LaTeX2e (+ amssymb, amsthm); to appear in J. Phys.
Tetromino tilings and the Tutte polynomial
We consider tiling rectangles of size 4m x 4n by T-shaped tetrominoes. Each
tile is assigned a weight that depends on its orientation and position on the
lattice. For a particular choice of the weights, the generating function of
tilings is shown to be the evaluation of the multivariate Tutte polynomial
Z\_G(Q,v) (known also to physicists as the partition function of the Q-state
Potts model) on an (m-1) x (n-1) rectangle G, where the parameter Q and the
edge weights v can take arbitrary values depending on the tile weights.Comment: 8 pages, 6 figure
Exact Solution of the Multi-Allelic Diffusion Model
We give an exact solution to the Kolmogorov equation describing genetic drift
for an arbitrary number of alleles at a given locus. This is achieved by
finding a change of variable which makes the equation separable, and therefore
reduces the problem with an arbitrary number of alleles to the solution of a
set of equations that are essentially no more complicated than that found in
the two-allele case. The same change of variable also renders the Kolmogorov
equation with the effect of mutations added separable, as long as the mutation
matrix has equal entries in each row. Thus this case can also be solved exactly
for an arbitrary number of alleles. The general solution, which is in the form
of a probability distribution, is in agreement with the previously known
results--which were for the cases of two and three alleles only. Results are
also given for a wide range of other quantities of interest, such as the
probabilities of extinction of various numbers of alleles, mean times to these
extinctions, and the means and variances of the allele frequencies. To aid
dissemination, these results are presented in two stages: first of all they are
given without derivations and too much mathematical detail, and then
subsequently derivations and a more technical discussion are provided.Comment: 56 pages. 15 figures. Requires Elsevier document clas
Comment on `Series expansions from the corner transfer matrix renormalization group method: the hard-squares model'
Earlier this year Chan extended the low-density series for the hard-squares
partition function to 92 terms. Here we analyse this extended
series focusing on the behaviour at the dominant singularity which lies
on on the negative fugacity axis. We find that the series has a confluent
singularity of order 2 at with exponents and
. We thus confirm that the exponent has the exact
value as observed by Dhar.Comment: 5 pages, 1 figure, IoP macros. Expanded second and final versio
Bethe Ansatz Equations for the Broken -Symmetric Model
We obtain the Bethe Ansatz equations for the broken -symmetric
model by constructing a functional relation of the transfer matrix of
-operators. This model is an elliptic off-critical extension of the
Fateev-Zamolodchikov model. We calculate the free energy of this model on the
basis of the string hypothesis.Comment: 43 pages, latex, 11 figure
Analyticity and Integrabiity in the Chiral Potts Model
We study the perturbation theory for the general non-integrable chiral Potts
model depending on two chiral angles and a strength parameter and show how the
analyticity of the ground state energy and correlation functions dramatically
increases when the angles and the strength parameter satisfy the integrability
condition. We further specialize to the superintegrable case and verify that a
sum rule is obeyed.Comment: 31 pages in harvmac including 9 tables, several misprints eliminate
General scalar products in the arbitrary six-vertex model
In this work we use the algebraic Bethe ansatz to derive the general scalar
product in the six-vertex model for generic Boltzmann weights. We performed
this calculation using only the unitarity property, the Yang-Baxter algebra and
the Yang-Baxter equation. We have derived a recurrence relation for the scalar
product. The solution of this relation was written in terms of the domain wall
partition functions. By its turn, these partition functions were also obtained
for generic Boltzmann weights, which provided us with an explicit expression
for the general scalar product.Comment: 24 page
Buoyant Venus Station feasibility study. Volume III - Instrumentation study Final report
Scientific instrumentation for inflatable buoyant Venus statio
Buoyant Venus station feasibility study. Volume IV - Communications and power Final report
Telecommunication and power supply requirements for inflatable buoyant Venus statio
- …