11,132 research outputs found

    Bethe Ansatz Equations for the Broken ZNZ_{N}-Symmetric Model

    Get PDF
    We obtain the Bethe Ansatz equations for the broken ZN{\bf Z}_{N}-symmetric model by constructing a functional relation of the transfer matrix of LL-operators. This model is an elliptic off-critical extension of the Fateev-Zamolodchikov model. We calculate the free energy of this model on the basis of the string hypothesis.Comment: 43 pages, latex, 11 figure

    The quantum bialgebra associated with the eight-vertex R-matrix

    Full text link
    The quantum bialgebra related to the Baxter's eight-vertex R-matrix is found as a quantum deformation of the Lie algebra of sl(2)-valued automorphic functions on a complex torus.Comment: 4 page

    A Generalized Q-operator for U_q(\hat(sl_2)) Vertex Models

    Full text link
    In this paper, we construct a Q-operator as a trace of a representation of the universal R-matrix of Uq(sl^2)U_q(\hat{sl}_2) over an infinite-dimensional auxiliary space. This auxiliary space is a four-parameter generalization of the q-oscillator representations used previously. We derive generalized T-Q relations in which 3 of these parameters shift. After a suitable restriction of parameters, we give an explicit expression for the Q-operator of the 6-vertex model and show the connection with Baxter's expression for the central block of his corresponding operator.Comment: 22 pages, Latex2e. This replacement is a revised version that includes a simple explicit expression for the Q matrix for the 6-vertex mode

    Corner Transfer Matrix Renormalization Group Method Applied to the Ising Model on the Hyperbolic Plane

    Full text link
    Critical behavior of the Ising model is investigated at the center of large scale finite size systems, where the lattice is represented as the tiling of pentagons. The system is on the hyperbolic plane, and the recursive structure of the lattice makes it possible to apply the corner transfer matrix renormalization group method. From the calculated nearest neighbor spin correlation function and the spontaneous magnetization, it is concluded that the phase transition of this model is mean-field like. One parameter deformation of the corner Hamiltonian on the hyperbolic plane is discussed.Comment: 4 pages, 5 figure

    Equations of motion approach to the spin-1/2 Ising model on the Bethe lattice

    Full text link
    We exactly solve the ferromagnetic spin-1/2 Ising model on the Bethe lattice in the presence of an external magnetic field by means of the equations of motion method within the Green's function formalism. In particular, such an approach is applied to an isomorphic model of localized Fermi particles interacting via an intersite Coulomb interaction. A complete set of eigenoperators is found together with the corresponding eigenvalues. The Green's functions and the correlation functions are written in terms of a finite set of parameters to be self-consistently determined. A procedure is developed, that allows us to exactly fix the unknown parameters in the case of a Bethe lattice with any coordination number z. Non-local correlation functions up to four points are also provided together with a study of the relevant thermodynamic quantities.Comment: RevTex, 29 pages, 13 figure

    Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix

    Full text link
    We discuss an algebraic method for constructing eigenvectors of the transfer matrix of the eight vertex model at the discrete coupling parameters. We consider the algebraic Bethe ansatz of the elliptic quantum group Eτ,η(sl2)E_{\tau, \eta}(sl_2) for the case where the parameter η\eta satisfies 2Nη=m1+m2τ2 N \eta = m_1 + m_2 \tau for arbitrary integers NN, m1m_1 and m2m_2. When m1m_1 or m2m_2 is odd, the eigenvectors thus obtained have not been discussed previously. Furthermore, we construct a family of degenerate eigenvectors of the XYZ spin chain, some of which are shown to be related to the sl2sl_2 loop algebra symmetry of the XXZ spin chain. We show that the dimension of some degenerate eigenspace of the XYZ spin chain on LL sites is given by N2L/NN 2^{L/N}, if L/NL/N is an even integer. The construction of eigenvectors of the transfer matrices of some related IRF models is also discussed.Comment: 19 pages, no figure (revisd version with three appendices

    Auxiliary matrices for the six-vertex model and the algebraic Bethe ansatz

    Full text link
    We connect two alternative concepts of solving integrable models, Baxter's method of auxiliary matrices (or Q-operators) and the algebraic Bethe ansatz. The main steps of the calculation are performed in a general setting and a formula for the Bethe eigenvalues of the Q-operator is derived. A proof is given for states which contain up to three Bethe roots. Further evidence is provided by relating the findings to the six-vertex fusion hierarchy. For the XXZ spin-chain we analyze the cases when the deformation parameter of the underlying quantum group is evaluated both at and away from a root of unity.Comment: 32 page

    Auxiliary matrices on both sides of the equator

    Full text link
    The spectra of previously constructed auxiliary matrices for the six-vertex model at roots of unity are investigated for spin-chains of even and odd length. The two cases show remarkable differences. In particular, it is shown that for even roots of unity and an odd number of sites the eigenvalues contain two linear independent solutions to Baxter's TQ-equation corresponding to the Bethe ansatz equations above and below the equator. In contrast, one finds for even spin-chains only one linear independent solution and complete strings. The other main result is the proof of a previous conjecture on the degeneracies of the six-vertex model at roots of unity. The proof rests on the derivation of a functional equation for the auxiliary matrices which is closely related to a functional equation for the eight-vertex model conjectured by Fabricius and McCoy.Comment: 22 pages; 2nd version: one paragraph added in the conclusion and some typos correcte

    Variational method and duality in the 2D square Potts model

    Full text link
    The ferromagnetic q-state Potts model on a square lattice is analyzed, for q>4, through an elaborate version of the operatorial variational method. In the variational approach proposed in the paper, the duality relations are exactly satisfied, involving at a more fundamental level, a duality relationship between variational parameters. Besides some exact predictions, the approach is very effective in the numerical estimates over the whole range of temperature and can be systematically improved.Comment: 20 pages, 5 EPS figure

    Critical dynamics of the k-core pruning process

    Full text link
    We present the theory of the k-core pruning process (progressive removal of nodes with degree less than k) in uncorrelated random networks. We derive exact equations describing this process and the evolution of the network structure, and solve them numerically and, in the critical regime of the process, analytically. We show that the pruning process exhibits three different behaviors depending on whether the mean degree of the initial network is above, equal to, or below the threshold _c corresponding to the emergence of the giant k-core. We find that above the threshold the network relaxes exponentially to the k-core. The system manifests the phenomenon known as "critical slowing down", as the relaxation time diverges when tends to _c. At the threshold, the dynamics become critical characterized by a power-law relaxation (1/t^2). Below the threshold, a long-lasting transient process (a "plateau" stage) occurs. This transient process ends with a collapse in which the entire network disappears completely. The duration of the process diverges when tends to _c. We show that the critical dynamics of the pruning are determined by branching processes of spreading damage. Clusters of nodes of degree exactly k are the evolving substrate for these branching processes. Our theory completely describes this branching cascade of damage in uncorrelated networks by providing the time dependent distribution function of branching. These theoretical results are supported by our simulations of the kk-core pruning in Erdos-Renyi graphs.Comment: 12 pages, 10 figure
    corecore