190 research outputs found

    Thermodynamics of the Anisotropic Spin-1/2 Heisenberg Chain and Related Quantum Chains

    Full text link
    The free energy and correlation lengths of the spin-1/2 XYZXYZ chain are studied at finite temperature. We use the quantum transfer matrix approach and derive non-linear integral equations for all eigenvalues. Analytic results are presented for the low-temperature asymptotics, in particular for the critical XXZXXZ chain in an external magnetic field. These results are compared to predictions by conformal field theory. The integral equations are solved numerically for the non-critical XXZXXZ chain and the related spin-1 biquadratic chain at arbitrary temperature.Comment: 31 pages, LATEX, 5 PostScript figures appended, preprint cologne-93-471

    Baxterization, dynamical systems, and the symmetries of integrability

    Full text link
    We resolve the `baxterization' problem with the help of the automorphism group of the Yang-Baxter (resp. star-triangle, tetrahedron, \dots) equations. This infinite group of symmetries is realized as a non-linear (birational) Coxeter group acting on matrices, and exists as such, {\em beyond the narrow context of strict integrability}. It yields among other things an unexpected elliptic parametrization of the non-integrable sixteen-vertex model. It provides us with a class of discrete dynamical systems, and we address some related problems, such as characterizing the complexity of iterations.Comment: 25 pages, Latex file (epsf style). WARNING: Postscript figures are BIG (600kB compressed, 4.3MB uncompressed). If necessary request hardcopy to [email protected] and give your postal mail addres

    Segregation of granular binary mixtures by a ratchet mechanism

    Full text link
    We report on a segregation scheme for granular binary mixtures, where the segregation is performed by a ratchet mechanism realized by a vertically shaken asymmetric sawtooth-shaped base in a quasi-two-dimensional box. We have studied this system by computer simulations and found that most binary mixtures can be segregated using an appropriately chosen ratchet, even when the particles in the two components have the same size, and differ only in their normal restitution coefficient or friction coefficient. These results suggest that the components of otherwise non-segregating granular mixtures may be separated using our method.Comment: revtex, 4 pages, 4 figures, submitte

    Molecular basis for bacterial peptidoglycan recognition by LysM domains.

    Get PDF
    Carbohydrate recognition is essential for growth, cell adhesion and signalling in all living organisms. A highly conserved carbohydrate binding module, LysM, is found in proteins from viruses, bacteria, fungi, plants and mammals. LysM modules recognize polysaccharides containing N-acetylglucosamine (GlcNAc) residues including peptidoglycan, an essential component of the bacterial cell wall. However, the molecular mechanism underpinning LysM-peptidoglycan interactions remains unclear. Here we describe the molecular basis for peptidoglycan recognition by a multimodular LysM domain from AtlA, an autolysin involved in cell division in the opportunistic bacterial pathogen Enterococcus faecalis. We explore the contribution of individual modules to the binding, identify the peptidoglycan motif recognized, determine the structures of free and bound modules and reveal the residues involved in binding. Our results suggest that peptide stems modulate LysM binding to peptidoglycan. Using these results, we reveal how the LysM module recognizes the GlcNAc-X-GlcNAc motif present in polysaccharides across kingdoms

    A Contour Method on Cayley tree

    Full text link
    We consider a finite range lattice models on Cayley tree with two basic properties: the existence of only a finite number of ground states and with Peierls type condition. We define notion of a contour for the model on the Cayley tree. By a contour argument we show the existence of ss different (where ss is the number of ground states) Gibbs measures.Comment: 12 page

    Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy

    Get PDF
    Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter laboratory variations are discussed using a Cs,FA,MA Pb I,Br 3 halide perovskite thin film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance free JV curve with a potential power conversion efficiency of 24.6 . For grainsizes above amp; 8776;20 nm, intra grain charge transport is characterized by terahertz sum mobilities of amp; 8776;32 cm2 V amp; 8722;1 s amp; 8722;1. Drift diffusion simulations indicate that these intra grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presente

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →ΌâșΌ⁻KâșK⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Observation of electroweak production of Wγ with two jets in proton-proton collisions at √s = 13 TeV

    Get PDF
    A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1^{-1}. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj_{γjj} production in a restricted fiducial region is measured as 20.4 +/- 4.5 fb and the total cross section for Wγ_{γ} production in association with 2 jets in the same fiducial region is 108 +/- 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators
    • 

    corecore