27 research outputs found

    Effect of dose reduction on image quality and diagnostic performance in coronary computed tomography angiography

    Get PDF
    To evaluate the effect of radiation dose reduction on image quality and diagnostic accuracy of coronary computed tomography (CT) angiography. Coronary CT angiography studies of 40 patients with (n = 20) and without (n = 20) significant (≥50 %) stenosis were included (26 male, 14 female, 57 ± 11 years). In addition to the original clinical reconstruction (100 % dose), simulated images were created that correspond to 50, 25 and 12.5 % of the original dose. Image quality and diagnostic performance in identifying significant stenosis were determined. Receiver–operator-characteristics analysis was used to assess diagnostic accuracy at different dose levels. The identification of patients with significant stenosis decreased consistently at doses of 50, 25 and 12.5 of the regular clinical acquisition (100 %). The effect was relatively weak at 50 % dose, and was strong at dose levels of 25 and 12.5 %. At lower doses a steady increase was observed for false negative findings. The number of coronary artery segments that were rated as diagnostic decreased gradually with dose, this was most prominent for smaller segments. The area-under-the-curve (AUC) was 0.90 (p = 0.4) at 50 % dose; accuracy decreased significantly with 25 % (AUC 0.70) and 12.5 % dose (AUC 0.60) (p < 0.0001), with underestimation of patients having significant stenosis. The clinical acquisition protocol for evaluation of coronary artery stenosis with CT angiography represents a good balance between image quality and patient dose. A potential for a modest (<50 %) reduction of tube current might exist. However, more substantial reduction of tube current will reduce diagnostic performance of coronary CT angiography substantially

    In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1

    Get PDF
    Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair

    Assessment of Myocardial Fibrosis in Mice Using a T2*-Weighted 3D Radial Magnetic Resonance Imaging Sequence

    Get PDF
    Background Myocardial fibrosis is a common hallmark of many diseases of the heart. Late gadolinium enhanced MRI is a powerful tool to image replacement fibrosis after myocardial infarction (MI). Interstitial fibrosis can be assessed indirectly from an extracellular volume fraction measurement using contrast-enhanced T1 mapping. Detection of short T2* species resulting from fibrotic tissue may provide an attractive non-contrast-enhanced alternative to directly visualize the presence of both replacement and interstitial fibrosis. Objective To goal of this paper was to explore the use of a T2*-weighted radial sequence for the visualization of fibrosis in mouse heart. Methods C57BL/6 mice were studied with MI (n = 20, replacement fibrosis), transverse aortic constriction (TAC) (n = 18, diffuse fibrosis), and as control (n = 10). 3D center-out radial T2*-weighted images with varying TE were acquired in vivo and ex vivo (TE = 21 mu s-4 ms). Ex vivo T2*-weighted signal decay with TE was analyzed using a 3-component model. Subtraction of short-and long-TE images was used to highlight fibrotic tissue with short T2*. The presence of fibrosis was validated using histology and correlated to MRI findings. Results Detailed ex vivo T2*-weighted signal analysis revealed a fast (T2*(fast)), slow (T2*(slow)) and lipid (T2*(lipid)) pool. T2*(fast) remained essentially constant. Infarct T2*(slow) decreased significantly, while a moderate decrease was observed in remote tissue in post-MI hearts and in TAC hearts. T2*(slow) correlated with the presence of diffuse fibrosis in TAC hearts (r = 0.82, P = 0.01). Ex vivo and in vivo subtraction images depicted a positive contrast in the infarct co-localizing with the scar. Infarct volumes from histology and subtraction images linearly correlated (r = 0.94,

    Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes

    No full text
    During heart development, cells from the proepicardial organ spread over the naked heart tube to form the epicardium. From here, epicardium-derived cells (EPDCs) migrate into the myocardium. EPDCs proved to be indispensable for the formation of the ventricular compact zone and myocardial maturation, by largely unknown mechanisms. In this study we investigated in vitro how EPDCs affect cardiomyocyte proliferation, cellular alignment and contraction, as well as the expression and cellular distribution of proteins involved in myocardial maturation. Embryonic quail EPDCs induced proliferation of neonatal mouse cardiomyocytes. This required cell-cell interactions, as proliferation was not observed in transwell cocultures. Western blot analysis showed elevated levels of electrical and mechanical junctions (connexin43, N-cadherin), sarcomeric proteins (Troponin-I, alpha-actinin), extracellular matrix (collagen I and periostin) in cocultures of EPDCs and cardiomyocytes. Immunohistochemistry indicated more membrane-bound expression of Cx43, N-cadherin, the mechanotransduction molecule focal adhesion kinase, and higher expression of the sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a). Newly developed software for analysis of directionality in immunofluorescent stainings showed a quantitatively determined enhanced cellular alignment of cardiomyocytes. This was functionally related to increased contraction. The in vitro effects of EPDCs on cardiomyocytes were confirmed in three reciprocal in vivo models for EPDC-depletion (chicken and mice) in which downregulation of myocardial N-cadherin, Cx43, and FAK were observed. In conclusion, direct interaction of EPDCs with cardiomyocytes induced proliferation, correct mechanical and electrical coupling of cardiomyocytes. ECM-deposition and concurrent establishment of cellular array. These findings implicate that EPDCs are ideal candidates as adjuvant cells for cardiomyocyte integration during cardiac (stem) cell therapy. (c) 2010 Elsevier Ltd. All rights reserved

    Cardiac malformations in Pdgfrα mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field

    No full text
    \u3cp\u3ePlatelet-derived growth factor receptor alpha (Pdgfrα) identifies cardiac progenitor cells in the posterior part of the second heart field. We aim to elucidate the role of Pdgfrα in this region. Hearts of Pdgfrα-deficient mouse embryos (E9.5-E14.5) showed cardiac malformations consisting of atrial and sinus venosus myocardium hypoplasia, including venous valves and sinoatrial node. In vivo staining for Nkx2.5 showed increased myocardial expression in Pdgfrα mutants, confirmed by Western blot analysis. Due to hypoplasia of the primary atrial septum, mesenchymal cap, and dorsal mesenchymal protrusion, the atrioventricular septal complex failed to fuse. Impaired epicardial development and severe blebbing coincided with diminished migration of epicardium-derived cells and myocardial thinning, which could be linked to increased WT1 and altered α4-integrin expression. Our data provide novel insight for a possible role for Pdgfrα in transduction pathways that lead to repression of Nkx2.5 and WT1 during development of posterior heart field-derived cardiac structures.\u3c/p\u3

    Electrical activation of sinus venosus myocardium and expression patterns of RhoA and Isl-1 in the chick embryo

    No full text
    Electrical Activity and RhoA in the Embryo.\u3cbr/\u3eINTRODUCTION:\u3cbr/\u3eMyocardium at the venous pole (sinus venosus) of the heart has gained clinical interest as arrhythmias can be initiated from this area. During development, sinus venosus myocardium is incorporated to the primary heart tube and expresses different markers than primary myocardium. We aimed to elucidate the development of sinus venosus myocardium, including the sinoatrial node (SAN), by studying expression patterns of RhoA in relation to other markers, and by studying electrical activation patterns of the developing sinus venosus myocardium.\u3cbr/\u3eMETHODS AND RESULTS:\u3cbr/\u3eExpression of RhoA, myocardial markers cTnI and Nkx2.5, transcription factors Isl-1 and Tbx18, and cation channel HCN4 were examined in sequential stages in chick embryos. Electrical activation patterns were studied using microelectrodes and optical mapping. Embryonic sinus venosus myocardium is cTnI and HCN4 positive, Nkx2.5 negative, complemented by distinct patterns of Isl-1 and Tbx18. During development, initial myocardium-wide expression of RhoA becomes restricted to right-sided sinus venosus myocardium, comprising the SAN. Electrophysiological measurements revealed initial capacity of both atria to show electrical activity that in time shifts to a right-sided dominance, coinciding with persistence of RhoA, Tbx18, and HCN4 and absence of Nkx2.5 expression in the definitive SAN.\u3cbr/\u3eCONCLUSION:\u3cbr/\u3eResults show an initially bilateral electrical potential of sinus venosus myocardium evolving into a right-sided activation pattern during development, and suggest a role for RhoA in conduction system development. We hypothesize an initial sinus venosus-wide capacity to generate pacemaker signals, becoming confined to the definitive SAN. Lack of differentiation toward a chamber phenotype would explain ectopic pacemaker foci

    Epithelial-to-mesenchymal transformation alters electrical conductivity of human epicardial cells

    No full text
    \u3cp\u3eThe myocardium of the developing heart tube is covered by epicardium. These epicardial cells undergo a process of epithelial-to-mesenchymal transformation (EMT) and develop into epicardium-derived cells (EPDCs). The ingrowing EPDCs differentiate into several celltypes of which the cardiac fibroblasts form the main group. Disturbance of EMT of the epicardium leads to serious hypoplasia of the myocardium, abnormal coronary artery differentiation and Purkinje fibre paucity. Interestingly, the electrophysiological properties of epicardial cells and whether EMT influences electrical conductivity of epicardial cells is not yet known. We studied the electrophysiological aspects of epicardial cells before and after EMT in a dedicatedin vitromodel, using micro-electrode arrays to investigate electrical conduction across epicardial cells. Therefore, human adult epicardial cells were placed between two neonatal rat cardiomyocyte populations. Before EMT the epicardial cells have a cobblestone (epithelium-like) phenotype that was confirmed by staining for the cell-adhesion molecule β-catenin. After spontaneous EMTin vitrothe EPDCs acquired a spindle-shaped morphology confirmed by vimentin staining. When comparing both types we observed that the electrical conduction is influenced by EMT, resulting in significantly reduced conductivity of spindle-shaped EPDCs, associated with a conduction block. Furthermore, the expression of both gap junction (connexins 40, Cx43 and Cx45) and ion channel proteins (SCN5a, CACNA1C and Kir2.1) was down-regulated after EMT. This study shows for the first time the conduction differences between epicardial cells before and after EMT. These differences may be of relevance for the role of EPDCs in cardiac development, and in EMT-related cardiac dysfunction.\u3c/p\u3

    Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy cntribute to adverse LV remodeling

    Get PDF
    Background: The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC). Methodology/Principal Findings: In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dt(max) and dP/dt(min) with prolonged tau (P, 0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro. Conclusions/Significance: Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target
    corecore