1,153 research outputs found

    Hypoxia-inducible factor-1α gene polymorphisms and cancer risk: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The results from the published studies on the association between <it>hypoxia-inducible factor -1α </it>(HIF-1α) polymorphisms and cancer risk are conflicting. In this meta-analysis, we aimed to investigate the association between <it>HIF-1α </it>1772 C/T and 1790 G/A polymorphisms and cancer.</p> <p>Methods</p> <p>The meta-analysis for 1772 C/T polymorphism included 4131 cancer cases and 5387 controls, and for 1790 G/A polymorphism included 2058 cancer cases and 3026 controls. Allelic and genotypic comparisons between cases and controls were evaluated. Subgroup analyses by cancer types, ethnicity, and gender were also performed. We included prostate cancer in male subgroup, and female specific cancers in female subgroup.</p> <p>Results</p> <p>For the 1772 C/T polymorphism, the analysis showed that the T allele and genotype TT were significantly associated with higher cancer risk: odds ratio (OR) = 1.29 [95% confidence interval (CI, 1.01, 1.65)], P = 0.04, P<sub>heterogeneity </sub>< 0.00001, and OR = 2.18 [95% CI (1.32, 3.62)], P = 0.003, P<sub>heterogeneity </sub>= 0.02, respectively. The effect of the genotype TT on cancer especially exists in Caucasians and female subjects: OR = 2.40 [95% CI (1.26, 4.59)], P = 0.008, P<sub>heterogeneity </sub>= 0.02, and OR = 3.60 [95% CI (1.17, 11.11)], P = 0.03, P<sub>heterogeneity </sub>= 0.02, respectively. For the 1790 G/A polymorphism, the pooled ORs for allelic frequency comparison and dominant model comparison suggested a significant association of 1790 G/A polymorphism with a decreased breast cancer risk: OR = 0.28 [95% CI (0.08, 0.90)], P = 0.03, P<sub>heterogeneity </sub>= 0.45, and OR = 0.29 [95% CI (0.09, 0.97)], P = 0.04, P<sub>heterogeneity </sub>= 0.41, respectively. The frequency of the <it>HIF-1α </it>1790 A allele was very low and only two studies were included in the breast cancer subgroup.</p> <p>Conclusions</p> <p>Our meta-analysis suggests that the <it>HIF-1α </it>1772 C/T polymorphism is significantly associated with higher cancer risk, and 1790 G/A polymorphism is significantly associated with decreased breast cancer risk. The effect of the 1772 C/T polymorphism on cancer especially exists in Caucasians and female subjects. Only female specific cancers were included in female subgroup, which indicates that the 1772 C/T polymorphism is significantly associated with an increased risk for female specific cancers. The association between the 1790 G/A polymorphism and lower breast cancer risk could be due to chance.</p

    Structural analysis of three novel trisaccharides isolated from the fermented beverage of plant extracts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fermented beverage of plant extracts was prepared from about fifty kinds of vegetables and fruits. Natural fermentation was carried out mainly by lactic acid bacteria (<it>Leuconostoc </it>spp.) and yeast (<it>Zygosaccharomyces </it>spp. and <it>Pichia </it>spp.). We have previously examined the preparation of novel four trisaccharides from the beverage: <it>O</it>-β-D-fructopyranosyl-(2->6)-<it>O</it>-β-D-glucopyranosyl-(1->3)-D-glucopyranose, <it>O</it>-β-D-fructopyranosyl-(2->6)-<it>O</it>-[β-D-glucopyranosyl-(1->3)]-D-glucopyranose, <it>O</it>-β-D-glucopyranosyl-(1->1)-<it>O</it>-β-D-fructofuranosyl-(2<->1)-α-D-glucopyranoside and <it>O</it>-β-D-galactopyranosyl-(1->1)-<it>O</it>-β-D-fructofuranosyl-(2<->1)- α-D-glucopyranoside.</p> <p>Results</p> <p>Three further novel oligosaccharides have been found from this beverage and isolated from the beverage using carbon-Celite column chromatography and preparative high performance liquid chromatography. Structural confirmation of the saccharides was provided by methylation analysis, MALDI-TOF-MS and NMR measurements.</p> <p>Conclusion</p> <p>The following novel trisaccharides were identified: <it>O</it>-β-D-fructofuranosyl-(2->1)-<it>O</it>-[β-D-glucopyranosyl-(1->3)]-β-D-glucopyranoside (named "3<sup>G</sup>-β-D-glucopyranosyl β, β-isosucrose"), <it>O</it>-β-D-glucopyranosyl-(1->2)-<it>O</it>-[β-D-glucopyranosyl-(1->4)]-D-glucopyranose (4<sup>1</sup>-β-D-glucopyranosyl sophorose) and <it>O</it>-β-D-fructofuranosyl-(2->6)-<it>O</it>-β-D-glucopyranosyl-(1->3)-D-glucopyranose (6<sup>2</sup>-β-D-fructofuranosyl laminaribiose).</p

    Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart

    Get PDF
    During embryonic development, the proepicardial organ (PEO) grows out over the heart surface to form the epicardium. Following epithelial-mesenchymal transformation, epicardium-derived cells (EPDCs) migrate into the heart and contribute to the developing coronary arteries, to the valves, and to the myocardium. The peripheral Purkinje fiber network develops from differentiating cardiomyocytes in the ventricular myocardium. Intrigued by the close spatial relationship between the final destinations of migrating EPDCs and Purkinje fiber differentiation in the avian heart, that is, surrounding the coronary arteries and at subendocardial sites, we investigated whether inhibition of epicardial outgrowth would disturb cardiomyocyte differentiation into Purkinje fibers. To this end, epicardial development was inhibited mechanically with a membrane, or genetically, by suppressing epicardial epithelial-to-mesenchymal transformation with antisense retroviral vectors affecting Ets transcription factor levels (n = 4, HH39-41). In both epicardial inhibition models, we evaluated Purkinje fiber development by EAP-300 immunohistochemistry and found that restraints on EPDC development resulted in morphologically aberrant differentiation of Purkinje fibers. Purkinje fiber hypoplasia was observed both periarterially and at subendocardial positions. Furthermore, the cells were morphologically abnormal and not aligned in orderly Purkinje fibers. We conclude that EPDCs are instrumental in Purkinje fiber differentiation, and we hypothesize that they coo

    Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis : From the PARADIGM Registry

    Get PDF
    Background Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography-determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. Methods and Results Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in 1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma volume 651.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3, model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML identifies that quantitative computed tomography variables were higher-ranking features, followed by qualitative computed tomography variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78-0.89], versus atherosclerotic cardiovascular disease risk score, 0.60 [0.52-0.67]; Duke coronary artery disease score, 0.74 [0.68-0.79]; ML model 1, 0.62 [0.55-0.69]; ML model 2, 0.73 [0.67-0.80]; all P&lt;0.001; statistical model, 0.81 [0.75-0.87], P=0.128). Conclusions Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP

    In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1

    Get PDF
    Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair

    Cardiac-resynchronization therapy in heart failure with a narrow QRS complex.

    Get PDF
    BACKGROUND: Cardiac-resynchronization therapy (CRT) reduces morbidity and mortality in chronic systolic heart failure with a wide QRS complex. Mechanical dyssynchrony also occurs in patients with a narrow QRS complex, which suggests the potential usefulness of CRT in such patients. METHODS: We conducted a randomized trial involving 115 centers to evaluate the effect of CRT in patients with New York Heart Association class III or IV heart failure, a left ventricular ejection fraction of 35% or less, a QRS duration of less than 130 msec, and echocardiographic evidence of left ventricular dyssynchrony. All patients underwent device implantation and were randomly assigned to have CRT capability turned on or off. The primary efficacy outcome was the composite of death from any cause or first hospitalization for worsening heart failure. RESULTS: On March 13, 2013, the study was stopped for futility on the recommendation of the data and safety monitoring board. At study closure, the 809 patients who had undergone randomization had been followed for a mean of 19.4 months. The primary outcome occurred in 116 of 404 patients in the CRT group, as compared with 102 of 405 in the control group (28.7% vs. 25.2%; hazard ratio, 1.20; 95% confidence interval [CI], 0.92 to 1.57; P=0.15). There were 45 deaths in the CRT group and 26 in the control group (11.1% vs. 6.4%; hazard ratio, 1.81; 95% CI, 1.11 to 2.93; P=0.02). CONCLUSIONS: In patients with systolic heart failure and a QRS duration of less than 130 msec, CRT does not reduce the rate of death or hospitalization for heart failure and may increase mortality. (Funded by Biotronik and GE Healthcare; EchoCRT ClinicalTrials.gov number, NCT00683696.)

    The TT genotype of methylenetetrahydrofolate reductase 677C>T polymorphism increases the susceptibility to pediatric ischemic stroke: meta-analysis of the 822 cases and 1,552 controls

    Get PDF
    The 677C>T polymorphism within methylenetetrahydrofolate reductase (MTHFR) gene is related to an elevated level of homocysteine. Thus it may be considered as a genetic risk factor in ischemic stroke. Apparently studies of this type of polymorphism in childhood stroke have shown conflicting results. We performed meta-analysis of all the data that are available in relation with MTHFR polymorphism and the risk of ischemic stroke in children. We searched PubMed (last search dated December 2010) using “MTHFR polymorphism”, “ischemic stroke” “child”, “children”, “pediatric stroke” as keywords and reference lists of studies and reviews on the topic. Finally, 15 case–control studies corresponded to the inclusion criteria for meta-analysis. These studies involved the total number of 822 children and adolescents after ischemic stroke and 1,552 control subjects. Fixed or random effects models were used depending on the heterogeneity between the studies. The association between ischemic stroke and 677C>T polymorphism within MTHFR gene was observed in three of the studies. The pooled analysis showed that TT genotype of MTHFR gene is more common in stroke patients than in controls (p = 0.0402, odds ratio = 1.57, 95 % confidence interval 1.02–2.41). The Egger’s test did not reveal presence of a publication bias. The results based on a sizeable group of cases and controls have proved that the 677C>T polymorphism in MTHFR gene is associated with the development of ischemic stroke in children
    corecore