14 research outputs found

    A New Versatile Electronic Speckle Pattern Interferometer For Vibration Measurements

    Get PDF
    Electronic speckle pattern interferometry (ESPI) has been widely used for vibration amplitude and phase measurements. Conventional ESPI systems are bulk and expensive and need careful alignment of all the optical components which is a time consuming task. To overcome these problems alternative compact ESPI systems were developed using fibre-optical components or holographic optical elements (HOEs). The fibre-optic based ESPI systems suffer from random phase fluctuations induced by environmental temperature changes. Hence HOEs can be used as more powerful alternative optical elements to design ESPI systems. The time average ESPI method is widely used for vibration studies. The time average method combined with phase stepping can be used for automatic vibration measurements. Using this technique higher vibration amplitudes cannot be measured because fringe patterns follow Bessel function intensity distribution. To overcome this problem an alternative technique can be used by modulating the phase of the reference beam in an unbalanced interferometer. This thesis reports a novel ESPI system for vibration measurements by combining use of holographic optical elements (HOEs) and optical path length modulation (reference beam phase modulation). The optical path length modulation is implemented using laser diode wavelength (frequency) modulation. Different HOE based ESPI systems are reported in this thesis using either a single HOE or dual HOE. This thesis examines performance of different HOE based ESPI systems that are sensitive to out-of-plane displacement components using laser diodes operating either in the near infrared or visible electromagnetic spectrum. Vibration modes of a circular metal plate clamped at the edges of a loud speaker and a circular metal plate driven by a piezoelectric actuator (PZT) were studied using a single RHOE based ESPI system and a hybrid (transmission HOE with a partially reflecting mirror) HOE based ESPI system respectively using a near infrared laser diode (763nm). Optical path length modulation technique was implemented using a laser diode operating in visible electromagnetic spectrum (658nm). Vibration mode patterns of a circular metal plate driven by a PZT actuator were obtained using both single RHOE and dual HOE based ESPI systems. Using optical path length modulation technique in a dual HOE based ESPI system detailed phase and amplitude maps of a circular metal plate driven by a PZT actuator are obtained. The dual HOE based ESPI system was also used for measuring roations of a circular metal plate mounted on a mirror mount. In conclusion we have developed a compact HOE based ESPI system to conduct vibration measurements. A few potential future developments are also suggested at the end of the thesis

    HOE-based ESPI Systems

    Get PDF
    Electronic speckle pattern interferometry (ESPI) is a full-field measurement technique, capable of displaying vibrational mode shapes. Two electronic speckle pattern interferometers using reflection holographic optical elements (RHOEs) are presented. In the first ESPI system the RHOE is designed to create the speckled reference beam. A partially reflective glass plate provides illumination of the object along the normal to its surface, ensuring that the system is sensitive only to out-of-plane displacement of the object. It is demonstrated that the HOE-based system can be used for vibration measurements. Phase shifting can be implemented for fringe analysis. In the second ESPI system a reflection holographic optical element of a flat diffusely reflecting surface serves a dual purpose. On reconstruction, a diffuse beam of laser light is produced to act as a reference beam in the ESPI system. Undiffracted light passing through the RHOE serves to illuminate the object. This system is not completely insensitive to in-plane displacement but the illumination and observation directions can be made nearly collinear. The systems are compared in terms of flexibility in their adjustment, sensitivity, suitability and limitations for different applications. The introduction of holographic optical elements in ESPSI systems gives the advantage of using high aperture optical elements at relatively low cost. Both systems are suitable for out-of-plane vibration studies. The results obtained are promising for future applications of RHOEs in alternative laser Doppler vibrometry systems

    Out-of-plane Vibration Analysis with a Transmission Holographic Optical Element Based Electronic Speckle Pattern Interferometer

    Get PDF
    A simple electronic speckle pattern interferometer (ESPI) using a transmission holographic optical element (THOE) is presented. The THOE is designed to create a speckled reference beam in the interferometer. It is a transmission hologram of a diffusely transmitting glass plate A specific requirement for the fabrication of the THOEs is for them to be recorded at one wavelength at which the recording material is photosensitive and reconstructed using a near infrared laser diode which can be current modulated for phase shifting purposes. A partially reflective glass plate provides illumination of the object along the normal to its surface, ensuring that the system is sensitive only to out-of-plane displacement of the object. The intensity of the object beam can be controlled by using reflective glass plates with different reflection coefficients. It is demonstrated that the HOE based system can be used for vibration measurements and modal analysis. A big advantage of the system is its simplicity

    Design and Fabrication of Holographic Optical Elements for Applications in Electronic Speckle Pattern Interferometry and Laser Doppler Vibrometry

    Get PDF
    An important area of application of holographic optical elements (HOEs) is in optical and electronic speckle pattern interferometry. The design, fabrication and characterization of holographic optical elements (HOEs) for electronic speckle pattern interferometry are presented. Reflection HOEs (RHOEs) were fabricated for use in electronic speckle pattern interferometers (ESPI) and laser Doppler vibrometers (LDV). The HOE-based interferometer is sensitive to out-of-plane displacements only. The results obtained are promising for future applications of the system for modal analysis

    Electronic Speckle Pattern Interferometer using Holographic Optical Elements for Vibration Measurements

    Get PDF
    A simple and compact electronic speckle pattern interferometry (ESPI) built with holographic optical elements (HOEs) used for the study of out-of-plane vibration is reported. Carefully fabricated reflection and transmission HOEs provide reference and object beams in the interferometer. All the alignment difficulties in conventional ESPI systems are minimized using HOEs. The time average ESPI subtraction method is used to generate correlation fringes. The background speckle noise is removed by introducing a phase shift between sequential images. The amplitude and phase maps are obtained using path difference modulation in an unbalanced ESPI

    Fiber Optic Projection-Imaging System for Shape Measurement in Confined Space

    Get PDF
    A fiber-based projection-imaging system is proposed for shape measurement in confined space. Owing to the flexibility of imaging fibers, the system can be used in special scenarios that are difficult for conventional experimental setups. Three experiments: open space, closed space, and underwater are designed to demonstrate the strength and weakness of the system. It is shown that when proper alignment is possible, relatively high accuracy can be achieved; the error is less than 2% of the overall height of a specimen. In situations where alignment is difficult, significantly increased error is observed. The error is in the form of gross-scale geometrical distortion; for example, flat surface is reconstructed with curvature. In addition, the imaging fibers may introduce fine-scale noise into phase measurement, which has to be suppressed by smoothing filters. Based on results and analysis, it is found that although a fiber-based system has its unique strength, existing calibration and processing methods for fringe patterns have to be modified to overcome its drawbacks so as to accommodate wider applications

    Whole Field Out-of-plane Vibration Analysis with a HOE-based ESPI System

    Get PDF
    Electronic speckle pattern interferometry (ESPI) is a full-field measurement technique, capable of displaying vibrational mode shapes. A simple optical set-up for an ESPI system using a holographic optical element (HOE) is presented. The HOE is designed to create a speckled reference beam in the interferometer. A partially reflective glass plate provides illumination of the object along the normal to its surface, ensuring that the system is sensitive only to out-of-plane displacement of the object. It is demonstrated that the HOE-based system can be used for vibration measurements. Phase shifting can be implemented for fringe analysis. A big advantage of the system is its simplicity. It requires a small number of components: a coherent light source, a holographic optical element, a glass plate and a CCD camera. Introducing holographic optical elements in ESPI gives the advantage of large aperture optical elements at relatively low cost

    Real Time Shrinkage Studies in Photopolymer Films Using Holographic Interferometry

    Get PDF
    Polymerisation induced shrinkage is one of the main reasons why photopolymer materials are not more widely used for holographic applications. The aim of this study is to evaluate the shrinkage in an acrylamide photopolymer layer during holographic recording using holographic interferometry. Shrinkage in photopolymer layers can be measured by real time capture of holographic interferograms during holographic recording. Interferograms were captured using a CMOS camera at regular intervals. The optical path length change and hence the shrinkage were determined from the captured fringe patterns. It was observed that the photopolymer layer shrinkage is in the order of 3.5%

    Application of Phase Shifting Electronic Speckle Pattern Interferometry in Studies of Photoinduced Shrinkage of Photopolymer Layers

    Get PDF
    Photoinduced shrinkage occurring in photopolymer layers during holographic recording was determined by Phase Shifting Electronic Speckle Pattern Interferometry. Phase maps were calculated from the changes in intensity at each pixel due to the phase differences introduced between object and reference beams. Shrinkage was then obtained from the changes in phase as recording proceeded. The technique allows for whole field measurement of the dimensional changes in photopolymers during holographic recording

    Compact holographic optical element-based electronic speckle pattern interferometer for rotation and vibration measurements

    Get PDF
    An out-of-plane sensitive electronic speckle pattern interferometer (ESPI) using holographic optical elements (HOEs) for studying rotations and vibrations is presented. Phase stepping is implemented by modulating the wavelength of the laser diode in a path length imbalanced interferometer. The time average ESPI method is used for vibration measurements. Some factors influencing the measurements accuracy are reported. Some advantages and limitations of the system are discussed
    corecore