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Application of Phase Shifting Electronic Speckle 
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2European Gravitational Observatory, Cascina PI, Italy 
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4izabela.naydenova@dit.ie 
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Abstract: Photoinduced shrinkage occurring in photopolymer layers during holographic 

recording was determined by Phase Shifting Electronic Speckle Pattern Interferometry. Phase 

maps were calculated from the changes in intensity at each pixel due to the phase differences 

introduced between object and reference beams. Shrinkage was then obtained from the changes 

in phase as recording proceeded. The technique allows for whole field measurement of the 

dimensional changes in photopolymers during holographic recording. 

© 2017 Optical Society of America 

OCIS codes: (090.0090) Holography; (120.6165) Speckle Interferometry, Metrology; (160.5470) Polymers; 

(090.7330) Volume gratings. 
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1. Introduction  

Change in angular position of the Bragg diffraction peak due to shrinkage in photopolymers is 

a significant disadvantage in applications such as holographic data storage and holographic 

optical elements. The effect of shrinkage will result in Bragg mismatch during reconstruction 

and the readout beam direction needs to be altered otherwise only a portion of data page can be 

read out for a particular readout geometry, which leads to large data errors. Compensation is 

required for the detuning of the Bragg angle and for that reason development of materials with 

low shrinkage is necessary. In order to achieve this an in-depth understanding of the processes 

influencing the shrinkage during holographic recording is required. Acrylamide based 

photopolymers are one of the most studied holographic recording materials. Shrinkage 

occurring during holographic recording in an acrylamide-based photopolymer [1] has been 

determined using real time holographic interferometry [2] and by measuring the shift in the 

angular position of the Bragg peak of a holographically recorded diffraction grating [3-6]. The 

measurements are typically made of the diffraction efficiency at a single point of the recorded 

holographic grating. Using this technique it has been established previously that monomer 

diffusion plays an important role in holographic recording [7] and it occurs simultaneously with 

the layer shrinkage. Alternatively, electronic speckle pattern interferometry (ESPI) can be used 

to measure in-plane and out-of-plane components of displacement continuously and 

independently of each other making it useful for determining whole field surface deformation 

and shrinkage. Lokberg [8] reported the use of a phase shifting technique in speckle 

interferometry to measure object displacement. Moving a mirror in the reference beam path by 

means of piezoelectric transducer is one of the most common techniques [9,10] for phase 

shifting. Phase shifting electronic speckle pattern interferometry was the technique of choice in 

this study because of its whole field and near real-time capability. 

2. Experimental Procedures 

The photopolymer solution was prepared as previously described [11]. Briefly, 0.6 g of 

acrylamide monomer was added to 9 ml stock solution of polyvinyl alcohol in water (20% 

wt/wt). Then 0.2 g of N, N-methylene bisacrylamide was added. To this solution 2 ml of 

triethanolamine and 4 ml of Erythrosine-B dye (0.11% wt. water stock solution) was added. 

Volumes of 0.3 ml were spread completely on 25 mm × 35 mm glass plates. The sample 

thicknesses in the area of recording after drying were approximately 100 ± 3 µm. Similarly 

volumes of 0.1 ml and 0.2 ml were spread on circular regions 1 cm and 1.4 cm in diameter 

respectively on a similar glass plate. The thickness after drying was 160 ± 3 µm. The ESPI 

system is as shown in Fig. 1. Shrinkage during holographic recording was measured in a 

photopolymer film photosensitized with green light sensitive dye - Erythrosin B (ErB). The 

glass substrate of the photopolymer was coated on its other side with non-reflective paint, to 

prevent back reflection of light from the glass. A similar glass plate, attached to a piezoelectric 

transducer (PZT) was used for phase shifting. The speckle interferometer beam paths are shown 

in red in Fig. 1. The beam produced by a He- Ne laser was split in two. The object beam reflected 

from the ErB sample and the reference beam partially reflected from the piezoelectrically driven 

glass plate were allowed to interfere on a CMOS camera faceplate (pixel size: 6 µm × 6 µm). 

The angular separation between the object and the reference beams was 90°. The field of view 

of the camera was 25 mm in width. The photopolymer film was exposed to an interference 

pattern produced by laser light of 532 nm wavelength at a spatial frequency of 1000 lines/mm 

with an angular separation between the two beams 30.85°. The paths of the interfering beams 

are shown in green in Fig. 1(a). The intensity profile of the 532 nm laser is shown in Fig. 1(b).  



 
  

Fig. 1. (a) ESPI system Light paths in green represent beams used to record a holographic 

diffraction grating in the photopolymer layer. Light paths in red are those of the speckle 
interferometer. (b) Intensity profile of recording beam. 

 
The PZT was controlled to produce phase shifts of 90o at 632.8 nm. Five phase shifted frames 

were stored for the unexposed layer. After exposure to the 532 nm interference pattern for 

predetermined amounts of time 5 new phase shifted frames were captured and stored. Phase 

shifted frames were captured and stored for different exposure time intervals. The five frame 

algorithm was used [12] to obtain phase maps, the phase  being given by  

 

 = 𝑡𝑎𝑛−1 [ 
2(𝐼4−𝐼2)

𝐼1−2𝐼3+𝐼5
 ]    (1) 

Where 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5 are the intensities of the interferograms with phase steps of ‐ 𝜋, ‐
𝜋

2
, 0,

𝜋

2
, 𝜋. 

The phase value at each pixel lies in ‐ 𝜋, ˖𝜋 range.  Gray level zero corresponds to phase value 

of ‐ 𝜋 and saturated white pixels correspond to phase value of ˖𝜋  

     The phase map calculated from these 5 phase shifted frames contains 2π phase 

discontinuities. Phase unwrapping is the process of removing these 2π phase steps [13]. One 

method of phase unwrapping is by calculating the phase difference between adjacent pixels by 

scanning along each rows or columns. Wherever phase jumps are detected, depending on the 

sign of the jump, 2π is either subtracted or added from the pixel’s phase value. The wrapped 

phase maps obtained before and during holographic exposure were unwrapped using the 2D-

SRNCP unwrapping algorithm [14] which belongs to the class of quality guided path 

algorithms. To prevent error propagation, this algorithm unwraps the pixels with highest 

reliability values first and those with lowest reliability value last. Reliability in this algorithm is 

determined by the second differences (meaning difference of phase gradients) between the pixel 

and its neighbours. In this way inconsistencies in the phase map can be reduced. The algorithm 

follows non-continuous paths for unwrapping. The phase maps still contain some errors which 

cannot be detected, but the algorithm is very robust in practice compared to continuous path 

unwrapping algorithms.  

An unwrapped phase map before exposure is shown in Fig. 2 (a). The unwrapped phase map 

after 84 sec exposure is shown in Fig. 2(b). The unwrapped phase maps corresponding to the 

sample surface profile before and after exposure were subtracted from one another to obtain 

Fig. 2(c) from which a 3D displacement map representing the shrinkage was calculated using 

Eq. 2 [15]. 

𝑑 = ( 
𝜆

4𝜋
 )        (2) 



 

where, Δ𝑑 - shrinkage in photopolymer layer; 𝜆 - wavelength of laser;  - unwrapped phase

 

 

Fig. 2. Unwrapped phase maps (a) before exposure (b) after 84 sec exposure (c) result of subtracting 

a from b. 

Since the shrinkage in lateral direction is small the developed system would be an ideal tool to 

determine out-of-plane shrinkage profile in photopolymer layers during holographic recording. 

Shrinkage in photopolymer materials is attributed to formation of long polymer chains with 

morphologies differing from that of monomer molecules. Photopolymerisation thus leads to 

increased density, accompanied by shrinkage. 

In order to determine the shrinkage profile of photopolymer during holographic exposure a 100 

µm photopolymer layer was exposed to 5 mW/cm2 laser intensity and phase shifted frames were 

captured at 21 sec, 42 sec, 84 sec and 168 sec of holographic exposure. The circular region of 

exposure was 2.3 cm in diameter. Figs. 3(a) – 3(d) shows the two dimensional profile of absolute 

shrinkage at different times of exposures. The three dimensional profile of the white dotted area 

is shown in Figs. 3(e)- 3(h). 

Fig. 3. Two dimensional profile of absolute shrinkage of 100±3 μm sample at (a) 21sec (b) 

42sec (c) 84sec (d) 168sec of exposure, Three dimensional profile of the white dotted area in 

the 2D profile is shown from (e)-(h), recording intensity 5 mW/cm2

From Fig. 3 we can see that the shrinkage increases almost linearly with exposure time and then 

reaches saturation after about 100 sec. The line profiles in Fig. 4(a) are cross sections through 

the centres of the 2D maps (shown in red dotted line). We see from the line profile that the 

shrinkage is around 0.8 µm after 21 sec of recording. At 42 sec the maximum shrinkage is 

around 1.8 µm, at 84 sec it is 2.8 µm and at 168 sec it is 3.2 µm. Figure 4(b) shows shrinkage 

versus time at different pixels across a line through the centre of the map. In the shrinkage 

profiles 100 pixels corresponds to 7.5 mm. We see that the shrinkage is greater in the centre and 

is lower towards the edges. We could relate the increased shrinkage at the center to the Gaussian 



 

 

intensity profile of the recording laser. The data shows how with one single measurement a map 

of the shrinkage rather than a single point measurement can be carried out.                                                                                                         

 

Fig. 4. (a) Absolute shrinkage of 100 μm sample at recording intensity 5 mW/cm2 (b) Plot of 

shrinkage versus exposure times at different pixel number.  

We also have studied the effect of recording intensity on a 160 ± 3 µm sample by keeping the 

total exposure energy constant using intenstities of 1 mW/cm2, 5mW/cm2 and 10 mW/cm2. The 

exposure time times were 210 sec, 42 sec, and 21 sec respectively. The change in line profile of 

shrinkage with recording intensity is shown in Fig. 5 which shows that the shrinkage is greater 

for lower intensities. At lower intensity, the rate at which free radicals are generated is lower 

leading to a lower rate of termination resulting in longer polymer chains. Long polymer chains 

are more entangled and the polymerized material is likely to be denser and exhibit greater 

shrinkage. 

 

 
 

Fig. 5. Absolute shrinkage of 160 μm sample at exposure energy 210 mJ/cm2. 

It has been previously demonstrated [16] that shrinkage of photopolymer layers can be 

decreased by decreasing the length of the created polymer chains. In order to study the effects 

of monomer diffusion on the displacement profile of photopolymer layers during holographic 

recording, two sets of experiments were carried out. In the first set the circular exposure region 

(1 cm in diameter) was smaller in area than the photopolymer layer, allowing for the 

polymerisation driven monomer diffusion from the unexposed to the exposed area to take place. 

In the second set of experiments the exposure region is the same as that  the photopolymer layer, 

thus the effect of monomer diffusion is excluded. We have observed a reduction in shrinkage 

due to diffusion of monomer molecules from the unexposed regions. Samples of thickness 160± 

3 μm were exposed for 21 sec, 42 sec and 84 sec respectively with recording intensity 10 

mW/cm2. Fig. 6 (a) shows the shrinkage profile of recordings made after 21 sec of exposure. 

The black line shows the shrinkage profile when the sample area is smaller and the red line 

shows the profile when the sample area is larger than the exposure area. Similarly Figs. 6(b) 

and 6(c) show the shrinkage profiles after 42 sec and 84 sec of exposure. We can clearly see 



 

 

that diffusion plays a crucial role in shrinkage. In the case of holographic recording where the 

photopolymer layer is smaller in area than the exposure area, the shrinkage is greater at the 

center as well as at the edges. We can relate this to the fact there is no diffusion of monomer 

molecules from outside the exposure region. Considering a circular region of diameter 1cm the 

percentage differences in shrinkage as a result of monomer diffusion were 31%, 60% and 44 % 

respectively. While in the first 42sec the % shrinkage difference due to monomer diffusion 

increases almost linearly with time, further increase of exposure time leads to a decrease in 

shrinkage difference. This could be related to the fact that the diffused monomers were being 

polymerised as time progresses and also that their diffusion rate has been reduced. More detailed 

studies would be needed to properly evaluate the role of monomer diffusion on shrinkage 

dynamics. 

           

Fig. 6. Effect of diffsuion on shrinkage on a 160µm sample (a) 21sec of exposure (b) 42sec of 

exposure, (c) 84sec of exposure, recording intensity 10mW/cm2. 

3. Conclusions 

We have demonstrated measurement of whole-field deformation due to holographic recording 

in photopolymer, using a phase shifting ESPI system. Phase shifted specklegrams were captured 

before and after holographic recording for different recording times and intensities. These phase 

shifted specklegrams were used to obtain unwrapped phase maps before and after exposure. 

These maps were then subtracted from each other to obtain the shrinkage profile as a phase map 

and finally the actual full-field shrinkage profiles. It was observed that the shrinkage has its 

maximum in the center of the illumination spot and increases with the recording time. The 

dynamics of the shrinkage depends on the intensity of recording, a result that is consistent with 

previously reported data obtained from Bragg shift measurements in acrylamide based 

photopolymer holographic gratings. From the results presented here we can confirm that the 

recording beam intensity profile as well as diffusion from ouside the recording area will 

influence shrinkage. The technique described here will find application in the characterization 

of photosensitive polymer materials for holographic applications.  
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