363 research outputs found

    Correlates of Immunity to Filovirus Infection

    Get PDF
    Filoviruses can cause severe, often fatal hemorrhagic fever in humans. Recent advances in vaccine and therapeutic drug development have provided encouraging data concerning treatment of these infections. However, relatively little is known about immune responses in fatal versus non-fatal filovirus infection. This review summarizes the published literature on correlates of immunity to filovirus infection, and highlights deficiencies in our knowledge on this topic. It is likely that there are several types of successful immune responses, depending on the type of filovirus, and the presence and timing of vaccination or drug treatment

    Discovery of common marburgvirus protective epitopes in a BALB/c mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marburg virus (MARV) causes acute hemorrhagic fever that is often lethal, and no licensed vaccines are available for preventing this deadly viral infection. The immune mechanisms for protection against MARV are poorly understood, but previous studies suggest that both antibodies and T cells are required. In our study, we infected BALB/c mice with plaque-purified, nonlethal MARV and used overlapping peptides to map H2<sup><it>d</it></sup>-restricted CD8+ T-cell epitopes.</p> <p>Methods</p> <p>Splenocytes from mice infected with nonlethal MARV were harvested and stimulated with multiple overlapping 15-mer peptide pools, and reactive CD8+ T cells were evaluated for antigen specificity by measuring upregulation of CD44 and interferon-γ expression. After confirming positive reactivity to specific 15-mer peptides, we used extrapolated 9-mer epitopes to evaluate the induction of cytotoxic T-cell responses and protection from lethal MARV challenge in BALB/c mice.</p> <p>Results</p> <p>We discovered a CD8+ T-cell epitope within both the MARV glycoprotein (GP) and nucleoprotein (NP) that triggered cytotoxic T-cell responses. These responses were also protective when epitope-specific splenocytes were transferred into naïve animals.</p> <p>Conclusion</p> <p>Epitope mapping of MARV GP, NP, and VP40 provides the first evidence that specific MARV-epitope induction of cellular immune responses is sufficient to combat infection. Establishment of CD8+ T-cell epitopes that are reactive to MARV proteins provides an important research tool for dissecting the significance of cellular immune responses in BALB/c mice infected with MARV.</p

    A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Machupo virus (MACV), a member of the <it>Arenaviridae</it>, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics.</p> <p>Methods</p> <p>Mice lacking signal transducer and activator of transcription 1 (STAT-1) were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection.</p> <p>Results</p> <p>We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection.</p> <p>Conclusions</p> <p>The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.</p

    Screening of a Focused Ubiquitin-Proteasome Pathway Inhibitor Library Identifies Small Molecules as Novel Modulators of Botulinum Neurotoxin Type A Toxicity.

    Get PDF
    Botulinum neurotoxins (BoNTs) are known as the most potent bacterial toxins, which can cause potentially deadly disease botulism. BoNT Serotype A (BoNT/A) is the most studied serotype as it is responsible for most human botulism cases, and its formulations are extensively utilized in clinics for therapeutic and cosmetic applications. BoNT/A has the longest-lasting effect in neurons compared to other serotypes, and there has been high interest in understanding how BoNT/A manages to escape protein degradation machinery in neurons for months. Recent work demonstrated that an E3 ligase, HECTD2, leads to efficient ubiquitination of the BoNT/A Light Chain (A/LC); however, the dominant activity of a deubiquitinase (DUB), VCIP135, inhibits the degradation of the enzymatic component. Another DUB, USP9X, was also identified as a potential indirect contributor to A/LC degradation. In this study, we screened a focused ubiquitin-proteasome pathway inhibitor library, including VCIP135 and USP9X inhibitors, and identified ten potential lead compounds affecting BoNT/A mediated SNAP-25 cleavage in neurons in pre-intoxication conditions. We then tested the dose-dependent effects of the compounds and their potential toxic effects in cells. A subset of the lead compounds demonstrated efficacy on the stability and ubiquitination of A/LC in cells. Three of the compounds, WP1130 (degrasyn), PR-619, and Celastrol, further demonstrated efficacy against BoNT/A holotoxin in an in vitro post-intoxication model. Excitingly, PR-619 and WP1130 are known inhibitors of VCIP135 and USP9X, respectively. Modulation of BoNT turnover in cells by small molecules can potentially lead to the development of effective countermeasures against botulism

    Novi derivati 9-aminoakridina kao inhibitori botulinum neurotoksina i P. falciparum parazita malarije

    Get PDF
    Steroidal and adamantane aminoacridine derivatives were prepared and tested as both botulinum neurotoxin (BoNT) inhibitors and antimalarials.. Steroid-bound acridines provided good potency against both the BoNT/A and BoNT/B light chains (LCs). The observed inhibition of the BoNT/B LC by ca. 50 % is the highest attained inhibitory activity against this serotype by acridine-based compounds to date. With respect to the antimalarial activity, the adamantane acridines were the most potent derivatives (IC50 = 6-9 nM, SI gt 326), indicating that an adamantyl group is a better carrier than a steroidal motif for this indication.Sintetisani su derivati steroidnih i adamantil-akridina i ispitana je njihova inhibitorna aktivnost prema botulinum neurotoksinima (BoNT) i parazitu malarije. Steroidni akridini pokazuju dobru inhibiciju prema kratkom nizu (LCs) BoNT/A i BoNT/B. Ostvarena inhibicija BoNT/B LC od oko 50% je najviša postignuta vrednost akridinskih derivata prema ovom serotipu. Adamantil-akridinski derivati su pokazali najveću antimalarijsku aktivnost (IC50 u opsegu 6-9 nM, SI gt 326), pokazujući da je adamantil-grupa bolji nosač farmakofore u poređenju sa steroidnim, prema ovoj indikaciji.

    A high-content imaging assay for the quantification of the Burkholderia pseudomallei induced multinucleated giant cell (MNGC) phenotype in murine macrophages

    Get PDF
    BACKGROUND: Burkholderia pseudomallei (Bp), a Gram-negative, motile, facultative intracellular bacterium is the causative agent of melioidosis in humans and animals. The Bp genome encodes a repertoire of virulence factors, including the cluster 3 type III secretion system (T3SS-3), the cluster 1 type VI secretion system (T6SS-1), and the intracellular motility protein BimA, that enable the pathogen to invade both phagocytic and non-phagocytic cells. A unique hallmark of Bp infection both in vitro and in vivo is its ability to induce cell-to-cell fusion of macrophages to form multinucleated giant cells (MNGCs), which to date are semi-quantitatively reported following visual inspection. RESULTS: In this study we report the development of an automated high-content image acquisition and analysis assay to quantitate the Bp induced MNGC phenotype. Validation of the assay was performed using T6SS-1 (∆hcp1) and T3SS-3 (∆bsaZ) mutants of Bp that have been previously reported to exhibit defects in their ability to induce MNGCs. Finally, screening of a focused small molecule library identified several Histone Deacetylase (HDAC) inhibitors that inhibited Bp-induced MNGC formation of macrophages. CONCLUSIONS: We have successfully developed an automated HCI assay to quantitate MNGCs induced by Bp in macrophages. This assay was then used to characterize the phenotype of the Bp mutants for their ability to induce MNGC formation and identify small molecules that interfere with this process. Successful application of chemical genetics and functional reverse genetics siRNA approaches in the MNGC assay will help gain a better understanding of the molecular targets and cellular mechanisms responsible for the MNGC phenotype induced by Bp, by other bacteria such as Mycobacterium tuberculosis, or by exogenously added cytokines

    Development of a model for marburgvirus based on severe-combined immunodeficiency mice

    Get PDF
    The filoviruses, Ebola (EBOV) and Marburg (MARV), cause a lethal hemorrhagic fever. Human isolates of MARV are not lethal to immmunocompetent adult mice and, to date, there are no reports of a mouse-adapted MARV model. Previously, a uniformly lethal EBOV-Zaire mouse-adapted virus was developed by performing 9 sequential passages in progressively older mice (suckling to adult). Evaluation of this model identified many similarities between infection in mice and nonhuman primates, including viral tropism for antigen-presenting cells, high viral titers in the spleen and liver, and an equivalent mean time to death. Existence of the EBOV mouse model has increased our understanding of host responses to filovirus infections and likely has accelerated the development of countermeasures, as it is one of the only hemorrhagic fever viruses that has multiple candidate vaccines and therapeutics. Here, we demonstrate that serially passaging liver homogenates from MARV-infected severe combined immunodeficient (scid) mice was highly successful in reducing the time to death in scid mice from 50–70 days to 7–10 days after MARV-Ci67, -Musoke, or -Ravn challenge. We performed serial sampling studies to characterize the pathology of these scid mouse-adapted MARV strains. These scid mouse-adapted MARV models appear to have many similar properties as the MARV models previously developed in guinea pigs and nonhuman primates. Also, as shown here, the scid-adapted MARV mouse models can be used to evaluate the efficacy of candidate antiviral therapeutic molecules, such as phosphorodiamidate morpholino oligomers or antibodies
    corecore