45 research outputs found

    TRF2 controls telomeric nucleosome organization in a cell cycle phase-dependent manner

    Get PDF
    Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres.By means of chromatin immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping.Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization

    Distribution of the rDNA and three classes of highly repetitive DNA in the chromatin of interphase nuclei of Arabidopsis thaliana

    No full text
    The distribution of the ribosomal RNA (rRNA) genes and three classes of highly repetitive DNA in the chromatin of interphase nuclei of Arabidopsis thaliana was studied for the first time through non-isotopic in situ hybridization and luminescence digital imaging microscopy. Each of the three classes of highly repetitive DNA exhibited a characteristic hybridization pattern, and one class was seen to be primarily localized on two chromocentres, which would allow it to distinguish a particular chromosome. The rDNA was consistently localized on the two largest chromocentres and on one or two smaller chromocentres. A limited number of nuclei exhibited more than four labelled chromocentres, indicative of either polypoidy or differential amplification of the rDNA. In nuclei where the nucleolus could be clearly observed, the nucleolar associated chromocentres (NACs) were seen to be labelled by the ribosomal DNA (rDNA) probe

    Procedure for whole mount fluorescence in situ hybridization of interphase nuclei on Arabidopsis thaliana

    No full text
    A procedure for whole mount fluorescence in situ hybridization (FISH) on plant tissue is reported. The technique was demonstrated on seedlings and flowers of Arabidopsis thaliana L. with rDNA as a probe, labelled, both for direct and indirect detection. It was found that fixation in 1% formaldehyde yielded the best results with respect to morphology and hybridization efficiency. The combination of whole mount FISH and confocal scanning laser microscopy allowed the nuclear localization of the rDNA loci in all tissues of both seedlings and flowers. Direct labelling yielded the best signal-to-noise ratio, especially in the apical zones of the seedlings. The technique was further illustrated on seedlings of A, thaliana in double labelling experiments with rDNA and a tandemly repeated, 500 bp sequence of A. thaliana. Although nuclei in all tissues in the seedling exhibited both signals, hybridization efficiency for both signals was reduced in the dense, apical zones as compared with single labelling experiments with rDNA
    corecore