7 research outputs found

    Electrochemical Impedance Spectroscopy Behavior of Nanometric Al-Cr and Cr-Al Coatings by Magnetron Sputtering

    Get PDF
    Multilayer and bilayers structures have attracted much attention as a way of improving the mechanical and corrosion resistance properties of protective coatings. In this work the application of nanometric Al/Cr and Cr/Al bilayers deposited on AA2024-T3, AA60601-T6 aluminum alloys and AISI 9840 steel by magnetron sputtering and DC sputtering was studied. The materials were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) in order to consider their application as high corrosion resistance coatings. The corrosion behavior of the films was studied using a NaCl aqueous solution (3.5 wt %

    Electrochemical characterization of Al–Li alloys AA2099 and AA2055 for aeronautical applications: effect of thermomechanical treatments

    Get PDF
    Third-generation Al–Li alloys are high-performance materials that are very attractive for aircraft and aerospace applications due to their relatively low density, high specific strength, and stiffness. To study the effect of heat treatments on the electrochemical behavior of two high-performance aluminum-lithium alloys, in this work the electrochemical noise technique was used to evaluate the corrosion behavior of AA2099 and AA2055 alloys under three conditions of different heat treatments, an annealing treatment (T0), a second treatment in solid solution, followed by rapid cooling (quenching) and subsequent artificial aging (T6), and a third treatment in solid solution, tempering, cold deformation, and maturation artificial (T8). The time series obtained from the electrochemical noise tests were visually analyzed, as well as the statistical parameters such as localization index (LI), bias, and kurtosis. Analysis in the frequency domain was also performed by means of power spectral density (PSD) signals. In general, it was observed that the distribution of precipitates on the surface of the alloys considerably affects the corrosion performance, as well as the concentration of Cl-1 ions in the test electrolytes

    Effect of heat treatment on the electrochemical behavior of AA2055 and AA2024 alloys for aeronautical applications

    Get PDF
    Since their development, third-generation aluminum–lithium alloys have been used in aeronautical and other applications due to their good properties, replacing conventional Al-Cu and Al-Zn alloys and resulting in an increase in payload and fuel efficiency. The aim of this work was to investigate the influence of different heat treatments on the electrochemical corrosion behavior of the alloys AA2055 and AA2024 in the presence of three different electrolytes at room temperature, using an electrochemical noise (EN) technique in accordance with the ASTM-G199 standard. In the time domain, the polynomial method was employed to obtain the noise resistance (Rn), the localization index (IL), skewness, and kurtosis, and in the frequency domain, employing power spectral density analysis (PSD). The microstructure and mechanical properties of the alloys were characterized using scanning electron microscopy (SEM) and the Vickers microhardness test (HV). The results demonstrated better mechanical properties of the AA2055 alloy, which had a Vickers hardness of 77, 174, and 199 in the heat treatments T0, T6, and T8, respectively. An electrochemical noise resistance (Rn) of 2.72   105 W cm2 was obtained in the AA2055 T8 alloy evaluated in a NaCl solution, while the lowest Rn resistance of 2.87   101 W cm2 occurred in the AA2024 T8 alloy, which was evaluated in a HCl solution. The highest electrochemical noise resistance (Rn) was obtained in the AA2055 alloys, which had received the T6 and T8 heat treatments in the three solutions

    Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques

    Get PDF
    The anodization of titanium has been an excellent option for protecting titanium and its alloys from corrosive environments such as acids and chloride systems, by generating a homogenous oxide layer. The objective of the current investigation was to evaluate the electrochemical corrosion behavior of alloys Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V anodized in 1MH2SO4 andH3PO4 solutions at a current density of 2.5   10–3 A/cm2. The anodization’s electrochemical characterization was achieved in NaCl and H2SO4 at 3.5% wt. electrolytes. Scanning electron microscopy (SEM) was employed to determine the anodized thickness and morphology. Cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS), based on ASTM G61-86 and G106-15 Standards, were the electrochemical techniques mainly employed. The anodized samples presented a change in Ecorr values and a higher passivation zone. The EIS plot showed a higher resistance for samples anodized in H3PO4 and Ti-6Al-2Sn-4Zr-2Mo

    Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing

    Get PDF
    New manufacturing processes for metal parts such as additive manufacturing (AM) provide a technological development for the aeronautical and aerospace industries, since these AM processes are a means to reduce the weight of the parts, which generate cost savings. AM techniques such as Laser Powder Bed Fusions (LPBF) and Electron Beam Fusion (EBM), provided an improvement in mechanical properties, corrosion resistance, and thermal stability at temperatures below 400 °C, in comparison to conventional methods. This research aimed to study the oxidation kinetics of Ti-6Al-4V alloys by conventional and Electron Beam Additive Manufacturing. The thermogravimetric analysis was performed at temperatures of 600 °C, 800 °C, and 900 °C, having a heating rate of 25 °C/min and oxidation time of 24 h. The microstructural analysis was carried out by thermogravimetric analysis. Thickness and morphology of oxide layers were analyzed by field emission scanning electron microscope, phase identification (before and after the oxidation process) was realized by X-ray diffraction at room temperature and hardness measurements were made in cross section. Results indicated that the oxidation kinetics of Ti-6Al-4V alloys fabricated by EBM was similar to conventional processing and obeyed a parabolic or quasi-parabolic kinetics. The samples oxidized at 600 °C for 24 h presented the lowest hardness values (from 350 to 470 HV). At oxidation temperatures of 800 and 900 °C, however, highest hardness values (from 870 close to the alpha-case interface up to 300 HV in base metal) were found on the surface and gradually decreased towards the center of the base alloy. This may be explained by different microstructures presented in the manufacturing processe

    Corrosion Behavior of Passivated Martensitic and Semi-Austenitic Precipitation Hardening Stainless Steel

    Get PDF
    This research aimed to conduct a passive layer state study on martensitic and semi-austenitic precipitation hardening stainless steels (PHSS) passivated in citric acid and nitric acid baths at 49 and 70 °C for 50 and 75 min and subsequently exposed in 5 wt.% NaCl and 1 wt.% H2SO4 solutions. Corrosion behavior of the passivated material was observed by using potentiodynamic polarization (PP) according to the ASTM G5-11 standard. The microstructural analysis was performed by optical microscopy and scanning electron microscopy (SEM), while the passivated layer was characterized by X-ray photoelectron spectroscopy (XPS). The results indicated that the semi-austenitic-NA-50 min-70 °C sample showed the best corrosion resistance behavior in both solutions. The XPS characterization confirmed that the martensitic and semi-austenitic surface film presented a mixture of chemical compounds, such as Cr2O3 and Fe(OH)O, respectively
    corecore