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Abstract: The anodization of titanium has been an excellent option for protecting titanium and its
alloys from corrosive environments such as acids and chloride systems, by generating a homogenous
oxide layer. The objective of the current investigation was to evaluate the electrochemical corrosion
behavior of alloys Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V anodized in 1M H2SO4 and H3PO4 solutions at a
current density of 2.5× 10–3 A/cm2. The anodization’s electrochemical characterization was achieved
in NaCl and H2SO4 at 3.5% wt. electrolytes. Scanning electron microscopy (SEM) was employed to
determine the anodized thickness and morphology. Cyclic potentiodynamic polarization (CPP) and
electrochemical impedance spectroscopy (EIS), based on ASTM G61-86 and G106-15 Standards, were
the electrochemical techniques mainly employed. The anodized samples presented a change in Ecorr

values and a higher passivation zone. The EIS plot showed a higher resistance for samples anodized
in H3PO4 and Ti-6Al-2Sn-4Zr-2Mo.

Keywords: titanium; anodized; corrosion; electrochemical impedance spectroscopy; Warburg’s
diffusion

1. Introduction

Industries, including biomedicine and aerospace, require materials such as titanium
for their great properties, both mechanical and chemical. For this reason, the study of the
oxide layer produced on titanium has increased in recent years, with a view to increasing
the life of components, reducing costs for preventive and corrective maintenance, and
replacing steel in zones where corrosion is the higher priority [1–3].

Nonetheless, titanium and its alloys can present degradation when exposed to chloride
and acid media due to the defects in the layers generated by natural processes. Authors have
reported that the oxide film generated by titanium is composed of multivalent titanium,
which provokes layer degradation by galvanic or crevice corrosion [4–6].

The classification of Ti-alloys can be divided into four classes: α, near to α, α + β,
and metastable β; the classification will depend on the percentage of β elements that are
present. Gloria et al. and Peters et al. [7,8] indicated that the β elements are mainly Mo, Cr,
V, Ta, Fe, and Ni; the presence of these stabilizers can change the mechanical and chemical
properties of alloys. Song et al. [9] related the presence of vanadium with a reduction in the
oxide layer’s corrosion resistance to vanadium dissolution. Furthermore, for biomedical
applications, elements such as V and Al are classified as toxic for the human body because
they provoke genotoxicity, Alzheimer’s, and peripheral neuropathy [10,11].
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A good option for the problems generated by vanadium dissolution is to employ
alloys with elements such as Mo, Zr, Ta, or Sn. Mo and Ta are β stabilizers, so the properties
generated by V can be substituted. Further, the properties of the passive layer will increase
because authors have reported that alloys and passive layers with the presence of Mo
increase the corrosion resistance and produce a layer that is more difficult to dissolve.
Additionally, Mo presents a higher biocompatibility than V [12–14]. Alloys such as Ti-6Al-
2Sn-4Zr-2Mo can be selected to substitute Ti-6Al-4V, due to the properties of Mo as a β
stabilizer. Likewise, the chemical properties of Zr and Sn help to create a better passive
layer, even for corrosion resistance and biocompatibility [15–17].

Titanium and its alloys are reactive to oxygen; the kinetics of oxidation occurs instantly
and generate a TiO2 protective layer, as indicated in the research by Rao, Sul and Wang [18–20].
Various surface treatments applied to generate an oxide layer on titanium to increase the
corrosion resistance, such as sputtering, plasma, sol–gel, passivation, electrodeposition, and
anodization, have been employed to obtain a passive layer [21–23]. Narayanan et al. and
Jaquez-Muñoz et al. [24,25] found that anodizing could be considered one of the most impor-
tant surface treatments due to the quality of the oxide layer, the easy manufacturing process,
and the low production and operation costs.

Past research [26–30] demonstrated that the natural passive layer of titanium is sus-
ceptible to Cl− ion attacks because the diffusion of Cl− ions weakens the oxide layer. The
presence of Cl− and OH− in passive materials increases the corrosion rates by interstitial
penetration [31–34]. When electrochemical noise (EN) results were analyzed, anodized
Ti-alloys showed that the pore size was directly related to the corrosion rate, and the
anodized H3PO4 presented higher corrosion resistance due to H2SO4 creating bigger pores.
Moreover, alloys with elements such as Mo, Zr, Sn, and Cr presented the best performance
against corrosion. In the alloy Ti Beta-C, the performance was good, but the presence of
V decreased the passive range of the material compared with materials that did not have
V [26].

However, past researchers did not consider that the change in Ecorr against the metal
matrix and the electrochemical impedance spectroscopy (EIS) was more related to the
thickness of the coating. Socorro-Perdomo et al. [35] obtained, in a Ti-Mo alloy, the presence
of two different Randle circuits when samples were studied at different potentials. At
passive potentials, two time constants were present and related to the presence of Mo with
higher corrosion resistance.

Chávez-Díaz et al. [36] related the capacitive response with defects in passive oxides,
mainly oxygen vacancies in the oxide layer, principally suboxides such as TiO, Ti2O3,
and Al2O3, and the formation of oxyhydroxides and/or hydroxides. Mohazzab et al. [37]
obtained one constant circuit for alloy without coating, and with the coatings’ two time
constants, they related with the porous layer and the substrate/coating interface.

A low capacitive response is related to the protective layer and indicates better cor-
rosion properties. However, not all the samples presented the common double-layer
equivalent circuit of resistance and capacitance. Some samples have inductance, and this
behavior is shown when the species are adsorbed on the electrode surface. It occurs when
the alloying elements help to grow the oxide layer [38]. Some authors interpreted with
three RC constants, but the behavior was similar to the diffusion process and associated
with different porosity layers [39].

In other research, a diffusion process occurs; this is interpreted as Warburg’s element
(W); when the resistance of W is high, it can be associated with the formation of oxide
films [40]. Kulova et al. [41] related the W with the diffusion of sodium in the solid phase.
Other authors related it to the diffusion of Cl−, and when W impedance was decreased by
the concentration of ions, the passive layer was damaged [42].

This work aims to study the electrochemical behavior of anodization on Ti-6Al-2Sn-4Zr-
2Mo and Ti-6Al-4V exposed at 3.5 wt. % to NaCl and H2SO4 solutions. The electrochemical
characterization was performed by cyclic potentiodynamic polarization (CPP) and elec-
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trochemical impedance spectroscopy (EIS). The anodized layers were characterized by
scanning electron microscopy (SEM).

2. Materials and Methods
2.1. Material

The materials used in this work were Ti-6Al-2Sn-4Zr-2Mo (Supra alloys, Camarillo,
CA, USA) and, Ti-6Al-4V (Titanium Engineers, Stafford, TX, USA) used in the received
condition. The chemical composition of these alloys was obtained by atomic absorption
spectrometry and is listed in Table 1.

Table 1. Chemical composition of the titanium alloys (wt. %).

Elements Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-4V

Ti 84.65 ± 0.19 87.71 ± 0.36

Al 6.75 ± 0.20 7.14 ± 0.37

Sn 2.08 ± 0.01 –

V – 4.03 ± 0.08

Zr 4.18 ± 0.01 –

Mo 1.99 ± 0.008 –

2.2. Microstructural Characterization

Titanium alloys were prepared by metallography technique [43]. The materials were
polished using various SiC sandpaper grades 400, 600, and 800; each sample was ultrason-
ically cleaned for 10 min in ethanol (C2H5OH) and deionized water. The samples were
subjected to a chemical attack using a Kroll solution made up of 3 mL of hydrofluoric acid
(HF), 5 mL of nitric acid (HNO3), and 100 mL of water (H2O) for 30 s [44].

The surface and cross-section of titanium alloys were investigated using secondary
electron (SE) and backscattered electron (BSE) detectors in a scanning electron microscope
(SEM, JEOL-JSM-5610LV, Tokyo, Japan) operating at 20 kV and 8.5 and 12 mm work
distance. The chemical composition of alloys was obtained by energy-dispersive X-ray
spectroscopy (EDS, JEOL-JSM-5610LV, Tokyo, Japan).

2.3. Anodizing Process

Ultrasonic cleaning in ethanol (C2H5OH) and deionized water served as the pretreat-
ment for 10 min.

The anodizing procedure was carried out in an electrochemical cell with a graphite
rod serving as the cathode and 1 M electrolytes (analytical grade reagents (JT Baker)), with
the anodizing electrolyte’s temperature being 25 ◦C ± 1. Using a DC power source, the
titanium samples’ current density was 2.5 × 10−3 A·cm−2 for 600 s (XLN300025-GL). The
AMS2487 specification was followed during the anodizing procedure [45].

2.4. Electrochemical Measurements

Cyclic potentiodynamic polarization (CPP) and electrochemical impedance spec-
troscopy (EIS) were carried out at room temperature using a VersaSTAT 4 Princeton Applied
Research (Ametek, Inc. Oak Ridge, TN, USA) in 3.5 wt. % NaCl and H2SO4 solutions. A
conventional three-electrode cell configuration was employed for electrochemical charac-
terization at room temperature and all the corrosion tests were performed in triplicate. The
working electrode (WE, with an exposed surface of 1 cm2) was anodized for the current
study, the reference electrode (RE) was saturated calomel (SCE), and the counter electrode
(CE) of platinum [46].

The CPP parameters were a scan potential from −1.2 to 1.2 V vs. SCE of OCP. The
potential sweep was 1 mV/s to complete 1 cycle [47].
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EIS was realized with a potential amplitude of ±10 mV; the frequencies were from
100 kHz to 10 mHz. The equivalent circuit analysis was made in ZView [48].

3. Results
3.1. SEM Microstructural Analysis

Figure 1 shows the microstructure of the initial samples in the superficial section of
Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V. Figure 1a shows Ti-6Al-2Sn-4Zr-2Mo, presenting α
phase grains deformed with triple junction zones for β phase. Ti-6Al-4V had an equiaxial
and fine grain, the β phase had a spherical form, and αwas the matrix.
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Figure 1. Micrograph obtained by SEM-BES: (a) Ti-6Al-2Sn-4Zr-2Mo and (b) Ti-6Al-4V.

3.2. SEM Surface Analysis of Anodized Alloys

Figure 2 shows the surface characterization of the samples anodized in H2SO4 and
H3PO4. Figure 2a shows the Ti-6Al-2Sn-4Zr-2Mo anodized in H2SO4; this sample presented
a homogenous porosity, and the different levels can be observed, associated with a high
rugosity. Figure 2b of Ti-6Al-4V anodized in H2SO4 shows lower porosity but little crack
zones at a different level, associating this with high rugosity. Samples anodized in H3PO4
showed similar morphology with great porosities and heterogenous distribution and size.
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3.3. SEM Cross-Section Analysis of Anodized Alloys

Figure 3 shows the cross-section of the anodized samples with the measurements and
an element mapping by EDS for Ti-6Al-2Sn-4Zr-2Mo. Figure 3a shows the anodized sample
in H2SO4, where the average anodized thickness was 1.62 µm, with a major thickness of
1.88 µm and a lower one of 1.36 µm, having a uniform and continuous coating. At the top,
the material’s roughness can be observed, and cracks were not present. Figure 3b shows the
anodization in H3PO4, where the average anodized coating was 1.65 µm higher than that
anodized in H2SO4. However, this anodization presents more variability in the thickness
with a lower measurement of 1.28 µm and a higher one of 2.08 µm. However, the thickness
of the sample is within the specifications of AMS2487B.
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elemental mapping by SEM identified Ti, Mo, Sn, and O.

For that reason, the porosities of Figure 2a,b could be localized at the top, but after
that, a compact oxide layer was present. The element mappings of Figure 3 showed the
presence of alloying elements. In the coating, titanium was localized in all alloys, but in the
coating zone, the top was reduced; elements such as Sn had a presence in all the samples,
including the top. The oxygen in Figure 3 is concentrated in the coating zone, relating that
result to the oxide layer of Ti.

Figure 4 shows the cross-section of anodized Ti-6Al-4V with the measurements and
the mapping of the chemical composition obtained by EDS. Figure 4a shows the sample
anodized in H2SO4, where the average anodized thickness was 0.95 µm, with a higher
thickness of 1.02 µm and a lower one of 0.88 µm. This coating also presented a high
roughness, and the morphology could not be related to a compact layer. Figure 4b shows
the H3PO4 anodization had a higher coating thickness than the Figure 4a sample, with
an average of 1.53 µm. This coating also presented a higher thickness, and the layer was
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compact. In some anodized zones, some discontinuities could be observed. Only the
sample anodized in H3PO4 achieved the AMS2487B specs.
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Figure 4a,b show the presence of the chemical elements. Titanium was also present
in all matrixes, but the coating had more presence at the bottom than at the top for both
samples. These anodized samples showed the presence of aluminum and vanadium (more
than in the H2SO4 coating). This behavior is related to the formation of secondary oxides.
Oxygen had a presence in the coating zone, as previously explained.

3.4. Cyclic Potentiodynamic Polarization

Figure 5 shows the uncoated CPP for alloys and anodized samples in NaCl and H2SO4
at 3.5 wt. %. Figure 5a shows the behavior of Ti-6Al-2Sn-4Zr-2Mo uncoated and anodized
when exposed to NaCl; the uncoated sample presents a higher Ecorr when exposed to
NaCl compared with the anodized sample of Ti-6Al-2Sn-4Zr-2Mo, −0.397 V (see Table 2),
meaning that corrosion is most likely. The uncoated sample did not present a passivation
zone, indicating activation and material dissolution. The sample anodized with H2SO4
showed the highest icorr (4.53 × 10−7 A/cm2) in this media for the Ti-6Al-2Sn-4Zr-2Mo
alloy; furthermore, the behavior corresponds to coating and means that the anodized
sample presented a higher corrosion kinetics in comparison with the sample anodized in
H3PO4. The H3PO4-anodized sample presented better corrosion resistance and did not
show a significant passive breakdown potential, compared to that anodized in H2SO4.
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Figure 5b shows the behavior of uncoated and anodized Ti-6Al-2Sn-4Zr-2Mo when
exposed to H2SO4. In this case, the uncoated and the H2SO4 -anodized sample presented
similar values of Ecorr (−0.301 and−0.312 V) and icorr (1.86× 10−6 and 4.23× 10−6 A/cm2),
meaning a similar corrosion probability and kinetics. However, the H2SO4-anodized
sample presented three unusual reactions in the anodic breach, associated with a fast
electrochemical reaction on the surface due to the porosity. Furthermore, that reaction
in the anodic breach is related to an unstable oxide layer generated on the surface, and
the pitting and repassivation process that occurs. Additionally, the sample anodized with
H2SO4 presented a passivation range with a reduction of current demand, meaning that the
corrosion process was reduced. The sample anodized with H3PO4 presented the highest
Ecorr in this media, −0.002 V, and lower icorr, 3.24 × 10−8 A/cm2, associated with a lower
corrosion rate. The passivation range was more extended with 1.17 V, and a reduction of
current was presented.
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Table 2. Parameters obtained by CPP.

Sample
Ecorr icorr

Hysteresis
Range Passive

Breakdown
(V)

Corrosion
Rate

(mpy)

—βc
(V/decade)

βa
(V/decade)

β (v)
Rp

(Ω·cm2)
(V) (A/cm2) Passive

(V)

Ti-6Al-2Sn-4Zr-2Mo

3.5 wt. % NaCl

Uncoated −0.397 1.0 × 10−7 Negative N/A N/A 0.071 1.2 × 10−1 7.1 × 10−1 4.5 × 10−2 4.2 × 105

H2SO4 −0.330 4.5 × 10−7 Negative 1.29 1.19 0.251 1.6 × 10−1 1.4 6.2 × 10−2 1.3 × 105

H3PO4 −0.257 2.6 × 10−9 Negative 1.24 1.42 0.0014 2.6 × 10−1 7.8 × 10−1 7.7 × 10−2 2.9 × 107

3.5 wt. % H2SO4

Uncoated −0.301 1.8 × 10−6 Negative N/A N/A 1.39 2.4 × 10−1 4.1 × 10−1 6.7 × 10−2 3.6 × 104

H2SO4 −0.312 4.2 × 10−6 Negative 0.96 1.02 5.85 3.1 × 10−1 9.9 × 10−1 1.0 × 10−1 2.4 × 104

H3PO4 −0.002 3.2 × 10−8 Negative 1.24 1.42 0.022 1.8 × 10−1 4.6 × 10−1 5.6 × 10−2 1.7 × 106

Ti-6Al-4V
3.5 wt. % NaCl

Uncoated −0.144 1.0 × 10−7 Negative 0.6552 1.28 0.0388 1.4 × 10−1 1.5 × 10−1 3.3 × 10−2 3.2 × 105

H2SO4 −0.237 1.2 × 10−7 Negative 0.48 0.77 0.0848 3.2 × 10−1 6.2 × 10−1 9.3 × 10−2 7.6 × 105

H3PO4 −0.287 4.2 × 10−7 Negative 1.17 1.44 0.1127 3.9 × 10−1 1.8 1.3 × 10−1 3.2 × 105

3.5 wt. % H2SO4
Uncoated −0.475 6.7 × 10−6 Negative 0.92 1.01 9.31 1.9 × 10−1 11.2 8.3 × 10−2 1.2 × 104

H2SO4 −0.146 1.6 × 10−6 Negative 1.27 1.28 0.991 1.3 × 10−1 1.0 5.1 × 10−2 3.1 × 104

H3PO4 −0.318 4.6 × 10−7 Negative 1.78 0.94 0.382 9.2 × 10−2 6.9 × 1−1 3.5 × 10−2 7.7 × 104

Figure 5c shows the behavior of Ti-6Al-4V, uncoated and anodized, in NaCl at 3.5 wt %.
The uncoated sample had the higher Ecorr, −0.144 V (see Table 2) when exposed to NaCl
and compared with the anodized of Ti-6Al-4V; meanwhile, the anodized sample in H2SO4
and H3PO4 presented −0.237 and −0.287 V (see Table 2). However, the uncoated sample
presented the higher icorr, with 6.71 × 10−6, relating this behavior with a faster corrosion
kinetic. All the samples presented passivation, the highest being for the sample anodized
in H3PO4, meaning that the passive layer was more stable against corrosion processes.
The sample anodized in H3PO4 presented a passive region of 1.28 V, and also presented a
decrease in the current demand, from values near to ×10−6 to ×10−7 A/cm2, meaning a
reduction of electron transference, associated with an increase in the passive layer efficiency.
The anodized sample of Ti-6Al-4V in H2SO4 presented a lower passivation range (0.77 V),
but in that short period, the current demand remained uniform without increasing, relating
the process with passivation.

The high porosity and low thickness of anodized H2SO4 are related to the faster
passivity breakdown, shown in Figure 5c; that breakdown is of the passive layer generated
in the corrosion process. The decrease in the current demand for the samples anodized in
H3PO4 is related to the possible development of a passive layer in the anodized sample
corresponding to a diffusion process.

Figure 5c shows the behavior of uncoated and anodized Ti-6Al-4V in H2SO4 at
3.5 wt %. The uncoated sample presented the lowest Ecorr and highest icorr (−0.475 V
and 6.71 × 10−6 A/cm2) when exposed to H2SO4 media. For the anodized samples, the
worst corrosion performance characterized by CPP was for H2SO4, which presented a
higher icorr (1.69 × 10−6 A/cm2) but presented a higher Ecorr (−0.146 V), associating this
behavior with the demand of energy to begin an anodic process. The passivation range
was higher for anodized in H3PO4, giving rise to the best coating layer.

Table 2 shows the values of CPP obtained by Tafel interpolation and the range and
passive breakdown. All the samples presented a negative hysteresis, meaning that the
corrosion process occurring on the surface is uniform. The Ti-6Al-2Sn-4Zr-2Mo anodized in
H3PO4 showed the best corrosion performances in both media with the lowest icorr values
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(2.64 × 10−9 and 3.24 × 10−8 A/cm2). Furthermore, the passivation zone did not present
changes in current, which can be observed in the passivation range values.

In the case of Ti-6Al-2Sn-4Zr-2Mo, the sample anodized in H3PO4 showed the lowest
corrosion rate in both media with 0.0014 and 0.022 mpy in NaCl and H2SO4. Even the polar-
ization resistance was higher for the H3PO4 anodized sample, with values of 2.9 × 107 and
1.7 × 106 Ω·cm2 for NaCl and H2SO4. In comparison with the sample anodized in H2SO4
and the uncoated sample, the one anodized in H3PO4 presented the best performance
against corrosion.

For the Ti-6Al-4V, the sample anodized in H2SO4 presented a better corrosion perfor-
mance in NaCl than the Ti-6Al-4V anodized in H3PO4 with corrosion rates of 0.0848 mpy.
That performance was also higher than the Ti-6Al-2Sn-4Zr-2Mo anodized in H2SO4, mean-
ing that samples anodized in H2SO4 showed a better conduct against corrosion when it
was applied to Ti-6Al-4V. However, the Rp values presented showed a high dominance of
the Ti-6Al-2Sn-4Zr-2Mo alloy in both anodized electrolytes, but it is important to consider
the sample of Ti-6Al-4V anodized in H2SO4 as a good option for applications in acid media.

These results can be associated with a more uniform, compact, well-adherent oxide
layer. However, samples anodized in H3PO4 had a higher porosity than those anodized
in H2SO4. The former showed the best performance. The EIS technique may explain this
phenomenon.

3.5. Electrochemical Impedance Spectroscopy

Figure 6a shows the Nyquist plot for anodized samples of Ti-6Al-2Sn-4Zr-2Mo exposed
in NaCl at 3.5 wt. %. The uncoated sample presented titanium’s typical behavior with
the development of a natural passive layer. As shown in Figure 7a, the coated samples
presented similar behavior when the process was governed by diffusion. The H3PO4
anodized samples presented a higher resistance to porosity (Rpor) 5.42 × 104 Ω·cm2. The
porous layer is the first barrier, and afterward, the diffusion process occurs in the compact
oxide layer, and the resistance increased for both samples.

In Figure 6b, the uncoated sample presented a different behavior compared to that
presented in Figure 7b. This is related to the creation of a stable passive layer in H2SO4. The
anodized samples showed processes dominated by diffusion. For those anodized in H3PO4,
the Warburg’s resistance increased, meaning that oxygen diffusion occurred, increasing the
passive layer.

Figure 6c shows the behavior of Ti-6Al-4V in NaCl at 3.5 wt. %. The uncoated sample
showed a higher resistance due to the resistance of the metal–electrolyte interface. The
anodized porous layer was lower for the sample anodized in H3PO4. After the resistance
of the porous layer, a diffusion process governed the system.

Figure 6d shows the behavior when Ti-6Al-4V and the anodized sample were exposed
to H2SO4. The sample anodized in H3PO4 presented a higher value of Warburg’s resistance,
9.16 × 105 A/cm2. Such a behavior is related to creating a passive layer in the compact
oxide barrier. The resistance of the porous layer was lower for this sample due to the
high heterogeneous porosity. Furthermore, the Warburg’s impedance increased as the
thickness of the anodized samples was higher for H3PO4 than for H2SO4. This behavior
was presented for NaCl. The porosity had the same conduct in NaCl and H2SO4.

Figure 7 shows the Bode diagrams; Figure 7a,b shows the Bode diagrams for impedance
magnitude for Ti-6Al-2Sn-4Zr-2Mo. The samples anodized in H3PO4 presented the higher
impedance resistance with values of ×106 order; this can be related with a high corrosion
resistance. For the samples of Ti-6Al-4V, Figure 7e shows that samples anodized in H3PO4
exposed to NaCl presented higher impedance, associated with higher corrosion resistance.
On the other hand, when samples of Ti-6Al-4V were exposed to H2SO4 (Figure 7f) the
impedance of the anodized sample decreased to ×105 order; the values obtained were so
close to the uncoated sample, that it meant a possible anodizeddissolution.
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Figure 7c,d show the Bode diagrams vs. angle phase; the uncoated sample showed
one time constant in Figure 7c and two for Figure 7d. The anodized samples presented
the superposition of signals, meaning that two processes were occurring at the same time;
also, at low frequencies, a change in the slope was present. Figure 7g,d show Ti-6Al-4V; the
uncoated sample presented the same behavior for one time constant. On the other hand,
the anodized samples presented the behavior of two time constants, with a change in the
process between 100 kHz and 1 Hz related to the behavior of intermetallic coatings. Both
samples of Ti-6Al-4V showed the two time constants.

Figure 8 shows the equivalent circuit for the different systems. The uncoated samples
present the typical R-CPE behavior of Figure 8a; only the Ti-6Al-2Sn-4Zr-2Mo sample
presented the system from Figure 8b, related to the tendency to generate a passive layer
in H2SO4, and the stability of this one. All the anodized samples showed an 8c circuit
related to the resistance of the porosity barrier, and the diffusion in the compact barrier
zone, associated with an increase in the barrier. Figure 9 shows the diffusion behavior
of anodized samples, where the diffusion process begins in the barrier zone due to the
compactness of the coating in that zone.
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Figure 9. Corrosion system of the anodized samples.

Table 3 shows the parameters obtained by EIS. The anodized sample in Ti-6Al-2Sn-
4Zr-2Mo presented lower capacitance values related to increased coating thickness. Fur-
thermore, a porous barrier presented similar behavior. The samples anodized in H2SO4
showed lower values of n associated with a non-homogenous current distribution due to
the heterogenous porosity of the samples, even Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V. The
error of the equivalent circuit was acceptable for all the systems. The anodized Ti-6Al-2Sn-
4Zr-2Mo presented this technique’s best behavior against corrosion, with values of ×106

and ×107 A/cm2. The order of the porous barrier was 10 × 4 A/cm2, so the porosity was
more homogenous and stable.
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Table 3. Parameters obtained by EIS.

Sample Rs (Ω·cm2)
Rpor

(Ω·cm2)
CPE

(F/cm2) n R (Ω·cm2) C1 (F/cm2) W (Ω·cm2) X2

Ti-6Al-2Sn-4Zr-2Mo

3.5 wt. % NaCl

Uncoated 21.9 2.23 × 106 2.75 × 10−5 0.943 – – – 2.72 × 10−3

H2SO4 22.6 5.25 × 103 1.18 × 10−5 0.737 – – 7.80 × 106 9.90 × 10−4

H3PO4 18.7 5.42 × 104 2.75 × 10−5 0.973 – – 5.29 × 106 1.15 × 10−3

3.5 wt. % H2SO4

Uncoated 6.09 2.57 × 104 8.81 × 10−5 0.912 1.55 × 105 4.87 × 10−5 – 1.19 × 10−2

H2SO4 3.96 2.83 × 102 7.28 × 10−6 0.858 – – 9.00 × 105 1.15 × 10−2

H3PO4 1.84 1.79 × 104 3.01 × 10−7 0.824 – – 1.01 × 107 4.46 × 10−3

Ti-6Al-4V

3.5 wt. % NaCl

Uncoated 20.2 3.44 × 106 2.54 × 10−5 0.925 – – – 2.24 × 10−3

H2SO4 20.8 2.42 × 104 2.26 × 10−5 0.787 – – 8.22 × 105 1.31 × 10−3

H3PO4 23.1 1.56 × 103 4.36 × 10−7 0.802 – – 7.16 × 105 5.09 × 10−3

3.5 wt. % H2SO4

Uncoated 4.18 3.07 × 105 3.82 × 10−5 0.935 – – – 2.11 × 10−2

H2SO4 4.35 2.17 × 103 3.97 × 10−6 0.902 – – 5.57 × 105 3.32 × 10−3

H3PO4 4.72 9.27 × 101 1.20 × 10−5 0.822 – – 9.16 × 105 1.65 × 10−3

The following equation defines the calculation of the oxide film formed:

δox =
εε0

Ccc

In this case, the ε and ε0 correspond to oxide film permittivity, and the vacuum
permittivity (8.85 × 10−14 Fcm−1) and Ccc are the system’s capacitance. δox is the thickness
of the oxide film formed in the process. Table 4 shows the results of the thickness. The
value of ε for TiO2 was 86. The CPE can obtain the Ccc value from Table 3.

Table 4. Values of oxide film thickness generated by EIS.

Samples δ (m)
3.5 wt. % NaCl 3.5 wt. % H2SO4

Ti-6Al-2Sn-4Zr-2Mo
Uncoated 2.77 × 10−9 8.62 × 10−11

H2SO4 6.45 × 10−9 1.05 × 10−8

H3PO4 2.77 × 10−9 2.53 × 10−7

Ti-6Al-4V
Uncoated 2.15 × 10−9 1.99 × 10−9

H2SO4 3.37 × 10−9 1.92 × 10−8

H3PO4 1.75 × 10−7 6.34 × 10−9

The results of Table 4 show that the anodized samples of Ti-6Al-2Al-4Zr-2Mo presented
high values for the oxide layer generated when anodized in H3PO4. For Ti-6Al-4V, the
H3PO4 anodized samples showed a higher oxide generation in NaCl with 1.75 × 10−7 m
than all the anodized Ti-6Al-4V in any media. It is important to mention that the anodization
of Ti-6Al-2Sn-4Zr-2Mo presented an easier generation in H2SO4 and Ti-6Al-4V had easier
growth in NaCl media. Figure 10 schematizes the process of oxide layer growth.
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It is important to mention that the diffusion process begins in the oxide layer generated
by the corrosion process due to the porosities of that part.

4. Discussion

Previous researchers have emphasized the role of the porosity of titanium alloys
concerning their mechanical and corrosion resistance. Both samples showed porosity in
both samples, decreasing the mechanical and corrosion resistance due to the pores being
stress concentrators. This, in turn, makes the material susceptible to localized corrosion.
However, the material can repassivate it. The tiny pores help to reduce the diffusion process
in the electrolytes [49,50]. In this case, Ti-6Al-2Sn-4Zr-2Mo had a higher porosity, but the
size was smaller than in Ti-6Al-4V and localized in β phases [51,52].

In Figure 1b, the microstructure of Ti-6Al-4V and the porosity can make the material
vulnerable to problems in the coating. Kumar [53] mentioned that H2SO4, an anodized elec-
trolyte, produces a stable oxide layer. For that reason, the thickness of the anodized samples
in H2SO4 presented less variation in thickness measurements since the concentration of 1M
helped the correct flow of current.

The reaction in the anodic breach of Ti-6Al-2Sn-4Zr-2Mo anodized in H2SO4 was
explained by Cabral et al. [54] as a cathodic–anodic behavior in the system; however,
various authors related the reaction to the change in the electrolyte concentration when
there was a variation in pH and oxide reduction. Furthermore, it can be associated with a
reduction of the protective layer [55–59]. For this anodized sample, the behavior presented
was related to the reduction of anodized protection caused by oxygen reduction, and OH−

ions attacking the surface because of the heterogenous nature of the anodized sample.
The continuity of the other passivation zones is related to forming an oxide film in the
passivated or anodized surface [60,61].

However, the high thickness of the sample anodized in H3PO4 is associated with
continuous oxygen evolution; when it occurs in the anodizing process, it increases the
thickness, and it is also reported by various authors [62–66]. Conversely, El-Taib Heakal
et al. [67] mentioned that anodized H3PO4 presented better behavior against dissolution
than H3PO4. However, this research showed that anodizing in H3PO4 presented better
behavior against dissolution by using CPP and EIS. It can be observed in the anodic
breach of CPP, where the current densities of the passive layer in H2SO4 presented high
current demand in the system. The breaking potential of the passive layer is also lower
than samples anodized in H3PO4, indicating higher anodized stability. The facility of the
diffusion process corresponds to the electrolyte resistance, and the low ionic resistance
describes a faster kinetic [68].

Martinez et al. [69] related the increase in current density (icorr) to a passive layer that
does not contribute to corrosion protection, and also associated the increase in current
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density of passivation with an oxygen and chlorine evolution. Furthermore, they correlated
the incorporation of Mo to inhibit chloride ion absorption. For that reason, the increase in
corrosion resistance calculated by CPP was higher for Ti-6Al-2Sn-4Zr-2Mo, decreasing the
dissolution.

The low corrosion rate of Ti-6Al-2Sn-4Zr-2Mo anodized in H3PO4 (0.0014 and 0.022 mpy)
is related to lower anodized dissolution and the generation of a layer generated by the
corrosion process. The EIS characterization can corroborate that behavior.

The EIS double circle shown in Figure 6b, for the uncoated Ti-6Al-2Sn-4Zr-2Mo at
low frequencies, is related to the layer of the corrosion products and is called the double
electrochemical layer [70]. The value of “n” has different interpretations depending on
the authors. Fouda et al. [71] related the value of 1 with an ideal capacitor, and reducing
values reduces the charge of samples. Gomes et al. [72] related the CPE behavior with the
resistivity distribution in the thin oxide layer thickness. This method is possible and easily
determines the oxide thickness. The second time constant is related to the diffusion inside
the oxide layer. For that reason, Gateman et al. [73] concluded that CPE was directly related
to the interfacial properties of the system, and the correct analysis would depend directly
on that. Meanwhile, the n value being near 1 is related to a more homogenous surface.
Furthermore, the values are related to capacitive systems, where energy accumulation
begins with the process of charge transference.

The physical meaning of CPE has been a discussion motif for diverse authors. Macdon-
ald et al. [74–76] mentioned that CPE represents the conductive behavior of the dielectric;
however, the modeling is complex, and it is not easy to give an exactitude of the nature of
the system. On the other hand, authors relate the CPE with the phenomenon of surface
roughness, and when “n” values are between 1 and 0.9, the system is dominated by a
power law; meanwhile, when the value is 0.5, there is talk of a contorted surface (Warburg’s
diffusion) [77]. Kim et al. [78] related the CPE with the homogeneity of the surface reactions,
and once Schiller et al. [79] associated CPE with the thickness composition and variation.
Córdoba-Torres [80] mentioned that CPE at high frequencies is related to a less resistive
film (in zones) and, at low frequencies, is associated with the power law distribution,
dominating the low resistivity behavior of the distribution function. In this work, the
results of CPE are directly related to the surface’s homogeneity and resistance; when the
“n” value was near 1, the coating presented better properties against corrosion.

Additionally, that behavior can be observed in EIS with the increase in diffusion
resistance represented by Warburg’s element (W), meaning that the oxide layer is more
stable and increased.

Some authors relate the Warburg impedance at low frequencies with redox molecules
that diffuse in the system, giving a high Warburg impedance. However, when the Warburg
process occurs at high frequencies, it is associated with low impedance values [81]. In this
case, the high values of the Warburg resistance were consequent to a diffusion process that
occurred in the compact oxide layer–electrolyte interface, increasing the resistance of the
anodized samples. Rajan et al. [82] associated the disappearance in the coating of Warburg
impedance with the inhibition of diffusion, so the coating layer is very protective. It is
essential to mention that the electrochemical reaction governed by the Warburg impedance
is absorption, penetration and diffusion [83]. The absorption–penetration occurs in the
porous zone and the interface of the compact barrier and the diffusion in the compact
barrier; that process produces an increase in the properties against corrosion.

The process that decreases the corrosion rate by diffusion occurs with the continuous
development of a passive layer by the following reaction [84]:

Ti + 2H2O→ TiO2 + 4H+ + 4e−

For the electrolytes that contain Cl− ions, the colocation of the ions in titanium or the
anodized surface to form titanium oxide actuates by the following reactions:

Ti + 4Cl− → [TiCl4]− → TiCl4 + 4e−
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TiCl4 + 2H2O→ TiO2 + 4Cl− + 4H+

These results show that the diffusion process in titanium and titanium anodized
surfaces occurs on the solid phase due to the diffusion of metal ions in the porous layer.
The micropores of the first oxide layer act as preferent diffusion sites for the solution
ions [85–89].

The use of the constant phase element in the equivalent circuits is related to the non-deal
behavior of the capacitor. The physical explanation of this phenomenon is that the surface
is non-homogeneous and presents porosities or differences in roughness [86,88]. Therefore,
the value of “n” in the CPE element is lower for anodized H2SO4. The imperfection in
the anodized sample is higher; meanwhile, in H3PO4, the values of “n” are close to 1, so
the surface is more homogenous. Anodized Ti-6Al-4V presented values of “n” related to
heterogeneities in the surface.

Sadek et al. [90] mentioned that the formation of a hydroxide layer (Ti(OH)xOy) is
due to a limitation in the oxidation process by the increase in oxide. The layer created
by the hydroxide is porous, resulting in diffusion [91–93]. This behavior is observed in
Figure 5b of CPP, where a fast reaction produced the reaction in the anodic branch. In
EIS, the effects of hydroxide and secondary oxides are associated with the graphics of the
capacitive response [36].

5. Conclusions

• The anodized Ti-6Al-2Sn-4Zr-2Mo alloys presented the best properties against corro-
sion, as analyzed by the electrochemical techniques employed in this research work.
This behavior is related to Mo and Zr presence in the alloy and the anodized forms.

• The anodizing H2SO4 solution showed a smaller porosity than the H3PO4 anodizing
solution. However, the lower porosity helped to prevent ion penetration by capillarity.

• The samples of both alloys anodized in H3PO4 presented the biggest thickness mea-
surement by SEM of the anodization with a maximum value of 2.08 µm. The presence
of oxygen was higher in the oxide layer.

• The sample of Ti-6Al-2Sn-4Zr-2Mo presented the highest oxide growth of all, at
2.53 × 10−7 m, when it was anodized in H3PO4 and exposed to H2SO4. Meanwhile,
the Ti-6Al-4V presented the lowest oxide growth layer (3.57 × 10−9 m).

• The H2SO4-anodized sample for Ti-6Al-4V did not reach the minimum specifications
to accomplish the thickness required for AMS2487B for anodized aeronautical titanium.
Furthermore, both Ti-6Al-4V anodized samples presented the imperfections of high
roughness and lack of adherence.

• For characterization of the CPP, the alloys anodized with H3PO4 presented lower
icorr, meaning a lower corrosion kinetic. Additionally, both H2SO4-anodized samples
exposed to NaCl presented current densities similar to uncoated samples, meaning
that the Cl− could easily penetrate the anodizing layer.

• The samples of Ti-6Al-4V presented high corrosion rate values (between 0.084 and
0.991 mpy); meanwhile, Ti-6Al-2Sn-4Zr-2Mo showed the lowest corrosion rate values
of all the systems in NaCl and H2SO4 (0.0014 and 0.022 mpy).

• All the anodized samples studied by EIS were governed by a diffusion process repre-
sented by the Warburg element. The diffusion occurred after the porous layer finished
in the compact oxide layer of anodization, meaning that the anodization protects the
titanium from the electrolyte.

• The results obtained by CPP and EIS converged to characterize the anodized samples,
where the results showed that Ti-6Al-2Sn-4Zr-2Mo anodized in H3PO4 presented
the best properties against corrosion from both techniques. Furthermore, the results
matched with the SEM characterization where the anodized samples presented the
higher thickness (1.62 µm on average).
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