12 research outputs found

    Variable tau accumulation in murine models with abnormal prion protein deposits

    Get PDF
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177The conversion of cellular prion protein (PrP) into a misfolded isoform is central to the development of prion diseases. However, the heterogeneous phenotypes observed in prion disease may be linked with the presence of other misfolded proteins in the brain. While hyperphosphorylated tau (p.tau) is characteristic of Alzheimer's disease (AD), p.tau is also observed in human prion diseases. To explore this association in the absence of potential effects due to aging, drug treatment, agonal stage and postmortem delay we analyzed p.tau and PrP immunopositivity in mouse models. Analyses were performed on mice inoculated with prion agents, and mice with PrP amyloid in the absence of prion disease. We observed that p.tau was consistently present in animals with prion infectivity (models that transmit disease upon serial passage). In contrast, p.tau was very rarely observed or absent in mice with PrP amyloid plaques in the absence of prion replication. These data indicate that the formation of p.tau is not linked to deposition of misfolded PrP, but suggest that the interaction between replication of infectivity and host factors regulate the formation of p.tau and may contribute to the heterogeneous phenotype of prion diseases.https://doi.org/10.1016/j.jns.2017.10.040383pubpubDecember 201

    Differential Expression Patterns of Lynx Proteins and Involvement of Lynx1 in Prepulse Inhibition.

    Get PDF
    Negative allosteric modulators, such as lynx1 and lynx2, directly interact with nicotinic acetylcholine receptors (nAChRs). The nAChRs are integral to cholinergic signaling in the brain and have been shown to mediate different aspects of cognitive function. Given the interaction between lynx proteins and these receptors, we examined whether these endogenous negative allosteric modulators are involved in cognitive behaviors associated with cholinergic function. We found both cell-specific and overlapping expression patterns of lynx1 and lynx2 mRNA in brain regions associated with cognition, learning, memory, and sensorimotor processing, including the prefrontal cortex (PFC), cingulate cortex, septum, hippocampus, amygdala, striatum, and pontine nuclei. Since lynx proteins are thought to play a role in conditioned associations and given the expression patterns across brain regions, we first assessed whether lynx knockout mice would differ in a cognitive flexibility task. We found no deficits in reversal learning in either the lynx1-/- or lynx2-/- knockout mice. Thereafter, sensorimotor gating was examined with the prepulse inhibition (PPI) assessment. Interestingly, we found that both male and female lynx1-/- mice exhibited a deficit in the PPI behavioral response. Given the comparable expression of lynx2 in regions involved in sensorimotor gating, we then examined whether removal of the lynx2 protein would lead to similar behavioral effects. Unexpectedly, we found that while male lynx2-/- mice exhibited a decrease in the baseline startle response, no differences were found in sensorimotor gating for either male or female lynx2-/- mice. Taken together, these studies provide insight into the expression patterns of lynx1 and lynx2 across multiple brain regions and illustrate the modulatory effects of the lynx1 protein in sensorimotor gating
    corecore