27 research outputs found

    A 10 Mb/s visible light communication system using a low bandwidth polymer light-emitting diode

    Get PDF
    In this paper we experimentally demonstrate a 10 Mb/s error free visible light communications (VLC) system using polymer light-emitting diodes (PLEDs) for the first time. The PLED under test is a blue emitter with ∼600 kHz bandwidth. Having such a low bandwidth means the introduction of an intersymbol interference (ISI) induced penalty at higher transmission speeds and thus the requirement for an equalizer. In this work we improve on previous literature by implementing a decision feedback equalizer, rather than a linear equalizer. Considering 7% and 20% forward error correction codes, transmission speeds up to ∼12 Mb/s can be supported

    10 Mb/s visible light transmission system using a polymer light-emitting diode with orthogonal frequency division multiplexing

    Get PDF
    We present a newly designed polymer light-emitting diode with a bandwidth of ∼350 kHz for high-speed visible light communications. Using this new polymer light-emitting diode as a transmitter, we have achieved a record transmission speed of 10 Mb/s for a polymer light-emitting diode-based optical communication system with an orthogonal frequency division multiplexing technique, matching the performance of single carrier formats using multitap equalization. For achieving such a high data-rate, a power pre-emphasis technique was adopted

    Organic visible light communications: Methods to achieve 10 Mb/s

    No full text
    In this review, we summarise methods towards achieving 10 Mb/s connectivity for visible light communications links utilising organic polymer based light-emitting diodes as the transmitter. We present two different methods; on-off keying supported by least mean squares equalisation and orthogonal frequency division multiplexing without equalisation

    Dataset on the absorption of PCDTBT:PC70BM layers and the electro-optical characteristics of air-stable, large-area PCDTBT:PC70BM-based polymer solar cell modules, deposited with a custom built slot-die coater

    No full text
    The data presented in this article is related to the research article entitled “Fabrication of air-stable, large-area, PCDTBT:PC70BM polymer solar cell modules using a custom built slot-die coater” (D.I. Kutsarov, E. New, F. Bausi, A. Zoladek-Lemanczyk, F.A. Castro, S.R.P. Silva, 2016) [1]. The repository name and reference number for the raw data from the abovementioned publication can be found under: https://doi.org/10.15126/surreydata.00813106. In this data in brief article, additional information about the absorption properties of PCDTBT:PC70BM layers deposited from a 12.5 mg/ml and 15 mg/ml photoactive layer dispersion are shown. Additionally, the best and average J-V curves of single cells, fabricated from the 10 and 15 mg/ml dispersions, are presented
    corecore