963 research outputs found

    Critical holes in undercooled wetting layers

    Full text link
    The profile of a critical hole in an undercooled wetting layer is determined by the saddle-point equation of a standard interface Hamiltonian supported by convenient boundary conditions. It is shown that this saddle-point equation can be mapped onto an autonomous dynamical system in a three-dimensional phase space. The corresponding flux has a polynomial form and in general displays four fixed points, each with different stability properties. On the basis of this picture we derive the thermodynamic behaviour of critical holes in three different nucleation regimes of the phase diagram.Comment: 18 pages, LaTeX, 6 figures Postscript, submitted to J. Phys.

    Identifizierung VHL-assoziierter Veränderungen im klarzelligen Nierenzellkarzinom: Anwendung von kombinierten Genom- und Expressionsanalysen

    Get PDF
    Zusammenfassung: Das sporadische Nierenzellkarzinom (NZK) ist ein heterogener solider Tumor, der traditionell basierend auf morphologischen Kriterien in weitere Subtypen unterteilt wird. In den letzten Jahren konnten unter Anwendung molekularer Hochdurchsatzanalysen genetische, transkriptionelle und translationale Alterationen identifiziert werden. Diese Marker eignen sich zum einen für die molekulare Klassifizierung des NZK und haben zum anderen prognostische Wertigkeit. Die isolierte Betrachtung genetischer, transkriptioneller und translationaler Veränderungen verhindert jedoch ein tieferes Verständnis für die komplexen Vorgänge der Karzinogenese. Wir fassen hier aktuelle Forschungsergebnisse zur molekularen Charakterisierung des NZK zusammen und stellen ein systembiologisches Konzept zur Identifizierung neuer Tumormarker vor. Diese könnten zukünftig Einsatz in der Diagnostik und Therapie des sporadischen NZK finde

    Immunophenotyping without antibodies: New perspectives for lymphoma characterization

    Get PDF
    Aims: Accurate classification of haematological malignancies is a prerequisite for their correct diagnosis, prognosis and therapy. Clear classification of lymphomas is often hindered by the limited number of available cell surface protein markers that are suitable for immunophenotyping. A systematic and quantitative analysis of cell surface proteins is thus required to identify new protein markers on lymphoma subtypes in an unbiased and discovery-driven approach. Methods: Nine Hodgkin and non-Hodgkin B cell lines of diffuse large cell type and mediastinal type were investigated by cell surface capture (CSC) technology, a mass spectrometry-based method to identify cell surface glycoproteins. Selected proteins are verified by antibody-based methods, including flow cytometry and immunohistochemistry on cell line arrays. Results: A total of 747 predicted transmembrane proteins were identified from all cell lines, including 142 CD (cluster of differentiation) annotated proteins. A group of differentially expressed cell surface glycoproteins between Hodgkin and non-Hodgkin B cell lines was revealed via quantitative CSC technology. In addition to classical and expected CD molecules such as CD20 and CD30, less frequently expressed molecules such as CD2 on Hodgkin lymphoma (HL) cell lines were identified by CSC and verified by immunohistochemistry in cell lines and primary lymphoma tissue. A panel of CSC-identified differentiation glycoprotein candidates is currently under investigation on tissue microarrays (TMAs) from patient sample

    Depinning in a Random Medium

    Full text link
    We develop a renormalized continuum field theory for a directed polymer interacting with a random medium and a single extended defect. The renormalization group is based on the operator algebra of the pinning potential; it has novel features due to the breakdown of hyperscaling in a random system. There is a second-order transition between a localized and a delocalized phase of the polymer; we obtain analytic results on its critical pinning strength and scaling exponents. Our results are directly related to spatially inhomogeneous Kardar-Parisi-Zhang surface growth.Comment: 11 pages (latex) with one figure (now printable, no other changes

    Facet Formation in the Negative Quenched Kardar-Parisi-Zhang Equation

    Full text link
    The quenched Kardar-Parisi-Zhang (QKPZ) equation with negative non-linear term shows a first order pinning-depinning (PD) transition as the driving force FF is varied. We study the substrate-tilt dependence of the dynamic transition properties in 1+1 dimensions. At the PD transition, the pinned surfaces form a facet with a characteristic slope scs_c as long as the substrate-tilt mm is less than scs_c. When m<scm<s_c, the transition is discontinuous and the critical value of the driving force Fc(m)F_c(m) is independent of mm, while the transition is continuous and Fc(m)F_c(m) increases with mm when m>scm>s_c. We explain these features from a pinning mechanism involving a localized pinning center and the self-organized facet formation.Comment: 4 pages, source TeX file and 7 PS figures are tarred and compressed via uufile

    One-Bead Microrheology with Rotating Particles

    Full text link
    We lay the theoretical basis for one-bead microrheology with rotating particles, i.e, a method where colloids are used to probe the mechanical properties of viscoelastic media. Based on a two-fluid model, we calculate the compliance and discuss it for two cases. We first assume that the elastic and fluid component exhibit both stick boundary conditions at the particle surface. Then, the compliance fulfills a generalized Stokes law with a complex shear modulus whose validity is only limited by inertial effects, in contrast to translational motion. Secondly, we find that the validity of the Stokes regime is reduced when the elastic network is not coupled to the particleComment: 7 pages, 5 figures, submitted to Europhys. Let

    Dynamic surface scaling behavior of isotropic Heisenberg ferromagnets

    Full text link
    The effects of free surfaces on the dynamic critical behavior of isotropic Heisenberg ferromagnets are studied via phenomenological scaling theory, field-theoretic renormalization group tools, and high-precision computer simulations. An appropriate semi-infinite extension of the stochastic model J is constructed, the boundary terms of the associated dynamic field theory are identified, its renormalization in d <= 6 dimensions is clarified, and the boundary conditions it satisfies are given. Scaling laws are derived which relate the critical indices of the dynamic and static infrared singularities of surface quantities to familiar static bulk and surface exponents. Accurate computer-simulation data are presented for the dynamic surface structure factor; these are in conformity with the predicted scaling behavior and could be checked by appropriate scattering experiments.Comment: 9 pages, 2 figure

    Guided Neuronal Growth on Arrays of Biofunctionalized GaAs/InGaAs Semiconductor Microtubes

    Get PDF
    We demonstrate embedded growth of cortical mouse neurons in dense arrays of semiconductor microtubes. The microtubes, fabricated from a strained GaAs/InGaAs heterostructure, guide axon growth through them and enable electrical and optical probing of propagating action potentials. The coaxial nature of the microtubes -- similar to myelin -- is expected to enhance the signal transduction along the axon. We present a technique of suppressing arsenic toxicity and prove the success of this technique by overgrowing neuronal mouse cells.Comment: 3 pages, 4 figure

    On Critical Exponents and the Renormalization of the Coupling Constant in Growth Models with Surface Diffusion

    Full text link
    It is shown by the method of renormalized field theory that in contrast to a statement based on a mathematically ill-defined invariance transformation and found in most of the recent publications on growth models with surface diffusion, the coupling constant of these models renormalizes nontrivially. This implies that the widely accepted supposedly exact scaling exponents are to be corrected. A two-loop calculation shows that the corrections are small and these exponents seem to be very good approximations.Comment: 4 pages, revtex, 2 postscript figures, to appear in Phys.Rev.Let
    • …
    corecore