2,968 research outputs found

    Self-supervised automated wrapper generation for weblog data extraction

    Get PDF
    Data extraction from the web is notoriously hard. Of the types of resources available on the web, weblogs are becoming increasingly important due to the continued growth of the blogosphere, but remain poorly explored. Past approaches to data extraction from weblogs have often involved manual intervention and suffer from low scalability. This paper proposes a fully automated information extraction methodology based on the use of web feeds and processing of HTML. The approach includes a model for generating a wrapper that exploits web feeds for deriving a set of extraction rules automatically. Instead of performing a pairwise comparison between posts, the model matches the values of the web feeds against their corresponding HTML elements retrieved from multiple weblog posts. It adopts a probabilistic approach for deriving a set of rules and automating the process of wrapper generation. An evaluation of the model is conducted on a dataset of 2,393 posts and the results (92% accuracy) show that the proposed technique enables robust extraction of weblog properties and can be applied across the blogosphere for applications such as improved information retrieval and more robust web preservation initiatives

    Investor protection through model case procedures – implementing collective goals and individual rights under the 2012 Amendment of the German Capital Markets Model Case Act (KapMuG)

    Get PDF
    The German Capital Markets Model Case Act (KapMuG) and its amendment of 2012 highlight some fundamentals of collective redress in civil law countries at the example of model case procedures in the field of investor protection. That is why a survey of the ongoing activities of the European Union in the area of collective redress and of its repercussions on the member state level forms a suitable basis for the following analysis of the 2012 amendment of the KapMuG. It clearly brings into focus a shift from sector-specific regulation with an emphasis on the cross-border aspect of protecting consumers towards a “coherent approach” strengthening the enforcement of EU law. As a result, regulatory policy and collective redress are two sides of the same coin today. With respect to the KapMuG such a development brings about some tension between its aim to aggregate small individual claims as efficiently as possible and the dominant role of individual procedural rights in German civil procedure. This conflict can be illustrated by some specific rules of the KapMuG: its scope of application, the three-tier procedure of a model case procedure, the newly introduced notification of claims and the new opt-out settlement under the amended §§ 17-19

    Accept/Reject Criteria for Structural Ceramics: Probablistic Models for Inclusion Initiated Fracture in Ceramics

    Get PDF
    Fracture tests on hot-pressed silicon nitride containing several types of inclusions have been conducted. Fracture models pertinent to each inclusion type have been proposed and correlated with the data. The resultant fracture probability relations are one of the key inputs to accept/reject decisions for nondestructive failure prediction

    A special simplex in the state space for entangled qudits

    Full text link
    Focus is on two parties with Hilbert spaces of dimension d, i.e. "qudits". In the state space of these two possibly entangled qudits an analogue to the well known tetrahedron with the four qubit Bell states at the vertices is presented. The simplex analogue to this magic tetrahedron includes mixed states. Each of these states appears to each of the two parties as the maximally mixed state. Some studies on these states are performed, and special elements of this set are identified. A large number of them is included in the chosen simplex which fits exactly into conditions needed for teleportation and other applications. Its rich symmetry - related to that of a classical phase space - helps to study entanglement, to construct witnesses and perform partial transpositions. This simplex has been explored in details for d=3. In this paper the mathematical background and extensions to arbitrary dimensions are analysed.Comment: 24 pages, in connection with the Workshop 'Theory and Technology in Quantum Information, Communication, Computation and Cryptography' June 2006, Trieste; summary and outlook added, minor changes in notatio

    Solvable model of a polymer in random media with long ranged disorder correlations

    Full text link
    We present an exactly solvable model of a Gaussian (flexible) polymer chain in a quenched random medium. This is the case when the random medium obeys very long range quadratic correlations. The model is solved in dd spatial dimensions using the replica method, and practically all the physical properties of the chain can be found. In particular the difference between the behavior of a chain that is free to move and a chain with one end fixed is elucidated. The interesting finding is that a chain that is free to move in a quadratically correlated random potential behaves like a free chain with R2LR^2 \sim L, where RR is the end to end distance and LL is the length of the chain, whereas for a chain anchored at one end R2L4R^2 \sim L^4. The exact results are found to agree with an alternative numerical solution in d=1d=1 dimensions. The crossover from long ranged to short ranged correlations of the disorder is also explored.Comment: REVTeX, 28 pages, 12 figures in eps forma

    Probabilistic Models for Defect Initiated Fracture in Ceramics

    Get PDF
    Fracture tests on hot-pressed silicon nitride containing voids and several types of inclusions have been conducted. Fracture models pertinent to each defect type have been proposed and correlated with the data. The specificity of the fracture models is emphasized, and the various trends with defect size that result from the models are described. The resultant fracture probability relations are one of the key inputs to accept/reject decisions for nondestructive failure prediction

    Localization of a polymer in random media: Relation to the localization of a quantum particle

    Full text link
    In this paper we consider in detail the connection between the problem of a polymer in a random medium and that of a quantum particle in a random potential. We are interested in a system of finite volume where the polymer is known to be {\it localized} inside a low minimum of the potential. We show how the end-to-end distance of a polymer which is free to move can be obtained from the density of states of the quantum particle using extreme value statistics. We give a physical interpretation to the recently discovered one-step replica-symmetry-breaking solution for the polymer (Phys. Rev. E{\bf 61}, 1729 (2000)) in terms of the statistics of localized tail states. Numerical solutions of the variational equations for chains of different length are performed and compared with quenched averages computed directly by using the eigenfunctions and eigenenergies of the Schr\"odinger equation for a particle in a one-dimensional random potential. The quantities investigated are the radius of gyration of a free gaussian chain, its mean square distance from the origin and the end-to-end distance of a tethered chain. The probability distribution for the position of the chain is also investigated. The glassiness of the system is explained and is estimated from the variance of the measured quantities.Comment: RevTex, 44 pages, 13 figure

    A differential method for bounding the ground state energy

    Get PDF
    For a wide class of Hamiltonians, a novel method to obtain lower and upper bounds for the lowest energy is presented. Unlike perturbative or variational techniques, this method does not involve the computation of any integral (a normalisation factor or a matrix element). It just requires the determination of the absolute minimum and maximum in the whole configuration space of the local energy associated with a normalisable trial function (the calculation of the norm is not needed). After a general introduction, the method is applied to three non-integrable systems: the asymmetric annular billiard, the many-body spinless Coulombian problem, the hydrogen atom in a constant and uniform magnetic field. Being more sensitive than the variational methods to any local perturbation of the trial function, this method can used to systematically improve the energy bounds with a local skilled analysis; an algorithm relying on this method can therefore be constructed and an explicit example for a one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics

    Characterizing entanglement with geometric entanglement witnesses

    Full text link
    We show how to detect entangled, bound entangled, and separable bipartite quantum states of arbitrary dimension and mixedness using geometric entanglement witnesses. These witnesses are constructed using properties of the Hilbert-Schmidt geometry and can be shifted along parameterized lines. The involved conditions are simplified using Bloch decompositions of operators and states. As an example we determine the three different types of states for a family of two-qutrit states that is part of the "magic simplex", i.e. the set of Bell-state mixtures of arbitrary dimension.Comment: 19 pages, 4 figures, some typos and notational errors corrected. To be published in J. Phys. A: Math. Theo
    corecore